
CICS Transaction Server for z/OS

Java Applications in CICS

Version 3 Release 1

SC34-6440-03

���

CICS Transaction Server for z/OS

Java Applications in CICS

Version 3 Release 1

SC34-6440-03

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

401.

Fourth edition (September 2006)

This edition applies to Version 3 Release 1 of CICS Transaction Server for z/OS, program number 5655-M15, and

to all subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are

using the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1999, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Preface . xi

What this information is about . xi

Who should read this information xi

Summary of Changes . xiii

Changes for CICS Transaction Server for z/OS, Version 3 Release 1 xiii

Changes for CICS Transaction Server for z/OS, Version 2 Release 3 xiii

Changes for CICS Transaction Server for z/OS, Version 2 Release 2 xiv

Part 1. Java development roadmaps . 1

Chapter 1. JCICS application roadmap 3

Chapter 2. CICS IIOP application roadmap 5

Chapter 3. CICS enterprise beans roadmap 7

Part 2. Developing Java applications for CICS 9

Chapter 4. Java applications in CICS 11

Types of Java application in CICS 11

Chapter 5. What you need to know about CICS 13

CICS transactions . 13

CICS tasks . 14

CICS application programs . 14

CICS services . 14

Chapter 6. Java programming using JCICS 17

The JCICS class library . 17

Translation . 17

JavaBeans . 17

Library structure . 18

CICS resources . 18

CICS storage requirements 19

Command arguments . 19

Serializable classes . 19

System.out and System.err 20

Threads . 20

JCICS command reference . 21

CICS exception handling in Java programs 21

Error handling and abnormal termination 23

APPC mapped conversations 24

Basic Mapping Support (BMS) 24

Channels and containers . 24

Diagnostic services . 27

Document services . 27

Environment services . 28

File services . 30

Program services . 33

Scheduling services . 34

Serialization services . 34

© Copyright IBM Corp. 1999, 2006 iii

||

Storage services . 34

Temporary storage queue services 34

Terminal services . 35

Transient data queue services 35

Unit of work (UOW) services 36

Web and TCP/IP services . 36

Unsupported CICS services 37

JCICS exception mapping . 37

Using JCICS . 39

Writing the main method . 39

Creating objects . 39

Using objects . 39

Chapter 7. Accessing data from CICS applications written in Java 41

Using Data Access beans . 42

Chapter 8. Using the JCICS sample programs 43

Building the JCICS sample programs 44

Building the Java samples . 45

Running the JCICS samples . 46

Running the Hello World samples 46

Running the Program Control samples 47

Running the TDQ sample . 48

Running the TSQ sample . 48

Running the web sample . 48

Part 3. Setting up Java support and JVMs 51

Chapter 9. Setting up Java support 53

Giving CICS regions access to z/OS UNIX System Services and HFS

directories and files . 53

Giving CICS regions a z/OS UNIX user identifier (UID) and group identifier

(GID) and setting up a home directory 54

Giving CICS regions permission to access HFS directories and files 56

Verifying the Java installation using sample programs 60

Chapter 10. Understanding JVMs 63

The structure of a JVM . 64

Classes in a JVM . 64

Where a JVM is constructed 68

JVMs and the z/OS shared library region 68

Storage heaps in a JVM . 69

How CICS creates JVMs . 71

Execution key (EXECKEY attribute) 72

JVM profiles (JVMPROFILE attribute) 73

How CICS locates the PROGRAM resource definition to create a JVM . . . 74

How CICS manages JVMs in the JVM pool 75

How CICS allocates JVMs to applications 79

How CICS deals with incoming requests for a JVM 81

How CICS deals with a queue of requests waiting for a JVM 82

The selection mechanism . 84

How JVMs are reused . 85

Continuous JVMs (REUSE=YES) 86

Resettable JVMs (REUSE=RESET) 87

Single-use JVMs (REUSE=NO) 88

The shared class cache . 89

iv Java Applications in CICS

||
|
||
|
||
||
||

Removal of support for CICS Transaction Server for OS/390, Version 1 Release

3 JVMs . 92

Chapter 11. Using JVMs . 93

Setting up JVM profiles and JVM properties files 94

Enabling CICS to locate the JVM profiles and JVM properties files 94

Choosing a JVM profile and JVM properties file 96

Customizing or creating JVM profiles and JVM properties files 102

Setting up the shared class cache 106

Defining the shared class cache 107

Enabling JVMs to use the shared class cache 109

Managing the shared class cache 110

Starting the shared class cache 111

Adjusting the size of the shared class cache 112

Updating classes or JAR files in the shared class cache 113

Terminating the shared class cache 116

Monitoring the shared class cache 118

Enabling applications to use a JVM 119

Programming for different types of JVM 120

Setting up a PROGRAM resource definition for a Java program to run in a

JVM . 126

Adding application classes to the class paths for a JVM 128

Managing your JVMs . 132

Monitoring JVM activity . 132

Terminating or disabling the JVM pool 134

Redirecting JVM output . 135

Problem determination for JVMs 139

Controlling tracing for JVMs . 140

Debugging an application that is running in a CICS JVM 142

Attaching a debugger to a CICS JVM 144

The CICS JVM plugin mechanism 146

Part 4. CICS and IIOP . 151

Chapter 12. IIOP support in CICS 153

The Object Request Broker (ORB) 153

CICS IIOP application models 154

Some common CORBA terminology 154

Chapter 13. The IIOP request flow 157

IIOP in a sysplex . 159

Workload balancing of IIOP requests 159

Domain Name System (DNS) connection optimization 160

Connection optimization registration 160

Name resolution example 161

Resource definition for DNS connection optimization 162

Avoiding Domain Name System (DNS) problems 163

Authentication of IIOP requests 163

The IIOP user-replaceable security program 165

CONNECTION authentication 165

Chapter 14. Configuring CICS for IIOP 167

Setting up the host system for IIOP 167

Defining a shelf directory . 168

Defining name servers . 168

Enabling JNDI references 169

Contents v

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
|
||
||
||
||
||
||
||
||
||
||
||

Setting up an LDAP server . 170

If you have an existing LDAP server configured for WebSphere 170

Configuring a new LDAP server 171

Determining the values for the system properties and adding them to your

JVM properties files . 174

The LDAP namespace structure 176

The container root . 176

The legacy root . 176

Domains . 176

Nodes . 177

Security considerations . 177

Setting up a COS Naming Directory Server 180

Setting up TCP/IP for IIOP . 180

Using DNS connection optimization 180

Setting up CICS for IIOP . 181

Defining CICS start-up jobstream 181

Defining CICS resources . 183

Chapter 15. Processing IIOP requests 189

Obtaining a CICS user ID . 189

Using the IIOP user-replaceable security program 191

Using DFHXOPUS . 192

Obtaining a CICS TRANSID 192

Pattern matching . 193

Name-mangling of the OPERATION field 194

REQUESTMODEL examples 194

Dynamic routing . 194

Name mangling for Java . 195

Why mangling is necessary for Java names 195

How Java names are mangled 195

How mangling affects CICS 196

Handling IIOP diagnostics . 196

Part 5. Using enterprise beans . 199

Chapter 16. What are enterprise beans? 201

Enterprise beans—the big picture 201

JavaBeans and Enterprise JavaBeans 202

Components . 202

JavaBeans . 203

Enterprise JavaBeans . 203

The EJB server—overview . 204

The EJB container—overview 204

The execution environment 205

Enterprise beans—the home and component interfaces 205

Enterprise beans—the deployment descriptor 206

The EJB server: summary . 206

Types of enterprise bean . 207

Session beans . 207

Entity beans . 208

Session beans and entity beans compared 209

Enterprise beans—managing transactions 210

Enterprise beans—security overview 211

Authentication . 211

Access control . 211

The Java 2 security manager 212

vi Java Applications in CICS

Enterprise beans—user tasks 212

The bean provider . 212

The application assembler 213

The deployer . 213

The system administrator 213

Deploying enterprise beans—overview 214

Configuring CICS as an EJB server—overview 216

Logical servers—enterprise beans in a sysplex 217

Setting up a logical EJB server 219

Enterprise beans—what can a client do with a bean? 223

Get a reference to the bean’s home 223

Use the home interface . 223

Use the component interface 224

Enterprise beans—what can a bean do? 224

Benefits of EJB technology . 225

Requirements for EJB support 226

Hardware . 226

Software . 226

Chapter 17. Setting up an EJB server 229

Setting up a single-region EJB server 229

Before running the EJB IVP 229

After running the EJB IVP—optional steps 235

Testing your EJB server . 236

Running the EJB IVP . 236

Using the EJB “Hello World” sample 236

Using the EJB Bank Account sample 237

Using your own enterprise beans 237

Setting up a multi-region EJB server 237

Migrating an EJB server to CICS Transaction Server for z/OS, Version 3

Release 1 . 240

Upgrading a single-region CICS EJB/CORBA server 240

Upgrading a multi-region CICS EJB/CORBA server 241

Migration tips . 245

Chapter 18. Running the EJB IVP 247

Prerequisites for the EJB IVP 247

Installing the EJB IVP . 248

HFS setup . 248

CICS setup . 248

Configuring the client . 249

Running the EJB IVP . 250

Chapter 19. Running the sample EJB applications 253

The EJB “Hello World” sample application 253

What the EJB “Hello World” sample does 253

Prerequisites for the EJB “Hello World” sample 254

Supplied components of the EJB “Hello World” sample 254

Installing the EJB “Hello World” sample 255

Testing the EJB “Hello World” sample 257

The EJB Bank Account sample application 261

What the EJB Bank Account sample does 261

Prerequisites for the EJB Bank Account sample 262

Supplied components of the EJB Bank Account sample 263

Security of the EJB Bank Account sample 264

Installing the EJB Bank Account sample 268

Contents vii

Testing the EJB Bank Account sample 271

A note about distributed transactions 275

A note about data conversion 276

Chapter 20. Writing enterprise beans 277

Preparing beans for execution 277

Coding a session bean . 278

Coding the home interface 278

Coding the remote interface 278

Coding the bean implementation 279

Compiling the code . 281

Packaging the code . 281

Writing the client program . 281

Creating object references in the namespace 281

Using JNDI to obtain bean references 282

Writing a Client program to use LDAP 282

Writing a client program to use COS Naming 285

Transaction interoperability with web application servers 287

Working with EJB Handles, HomeHandles and EJBMetaData 288

Using EDF with enterprise beans 289

Bean-to-bean communication 289

Chapter 21. Deploying enterprise beans 291

The deployment tools for enterprise beans in a CICS system 291

The Assembly Toolkit (ATK) 291

The resource manager for enterprise beans 291

CREA . 291

Using CICS deployment tools for enterprise beans 292

Chapter 22. Updating enterprise beans in a production region 295

The problem . 295

Possible solutions . 298

Solutions for a single listener/AOR 298

Solutions for a multi-region EJB server 302

Other possible solutions . 305

Chapter 23. The CCI Connector for CICS TS 307

Overview of the CCI Connector for CICS TS 307

The background—connectors 307

The Common Client Interface 307

The CCI Connector for CICS TS 309

Benefits of the CCI Connector for CICS TS 310

Sample applications . 311

Using the CCI Connector for CICS TS 312

Which classes to use? . 313

Data conversion and the CCI Connector for CICS TS 315

Installing the CCI Connector for CICS TS 315

Requirements for the CCI Connector for CICS TS 315

Compiling CCI applications 315

Running CCI applications on CICS TS 315

Using the sample utility programs to manage and acquire a connection factory 316

Installing the publish and retract sample programs 316

Publishing a connection factory using CICSConnectionFactoryPublish . . . 317

Looking up a connection factory 318

Retracting a connection factory using CICSConnectionFactoryRetract . . . 318

The CCI Connector sample application 319

viii Java Applications in CICS

||

Requirements for the CCI Connector sample 320

Installing the CCI Connector sample 320

Testing the sample . 321

Problem determination . 322

CCI Connector for CICS TS messages 322

Tracing the CCI Connector for CICS TS 322

Migrating from the CICS Connector for CICS TS to the CCI Connector for

CICS TS . 322

Chapter 24. Dealing with CICS enterprise bean problems 325

CICS enterprise bean set-up problems 325

Methods that require multiple request processors 325

Using EJB server runtime diagnostics 326

CICS enterprise bean errors and messages 326

JVM trace . 327

Debugging Java applications in CICS 327

Using EJB client runtime diagnostics 328

CORBA exceptions . 328

Class version issues with RMI-IIOP 330

Using EJB trace and serviceability commands 331

Chapter 25. Managing security for enterprise beans 333

Protecting Java applications in CICS by using the Java 2 security policy

mechanism . 333

Enabling a Java security manager and specifying policy files for a JVM 334

Specifying policy files to apply to all JVMs 336

The CICS-supplied enterprise beans policy file, dfjejbpl.policy 337

Using enterprise bean security 338

Defining file access permissions for enterprise beans 339

Deriving distinguished names 340

Security roles . 341

Deployed security roles . 342

Enabling and disabling support for security roles 343

Security role references . 343

Character substitution in deployed security roles 344

Security roles in the deployment descriptor 345

Implementing security roles . 347

Using the RACF EJBROLE generator utility 347

Defining security roles to RACF 349

Chapter 26. CICSPlex SM with enterprise beans 351

CICSPlex SM support for enterprise beans 351

CICSPlex SM definition support for enterprise beans 351

BAS logical scope considerations 352

Migration of enterprise bean components 353

CICSPlex SM inquiry support for enterprise beans 353

Types of inquiry available for enterprise bean objects 354

Using CICSPlex SM to manage EJB workloads 354

Workload balancing . 355

Workload separation . 355

CICSPlex SM resource monitoring considerations for enterprise beans 356

CICSPlex SM real-time analysis considerations for enterprise beans 356

Part 6. Using stateless CORBA objects 359

Chapter 27. Stateless CORBA objects 361

Contents ix

Developing stateless CORBA objects 361

Obtaining an interoperable object reference (IOR) 363

Creating the Interface Definition Language (IDL) 364

Developing an IIOP server program 365

IDL example . 367

Server implementation . 367

Resource definition for example 367

Developing the IIOP client program 368

Client example . 368

Developing an RMI-IIOP stateless CORBA application 369

Stand-alone CICS CORBA client applications 372

CORBA interoperability . 372

Using non-Java CORBA clients 373

Writing a CORBA client to an enterprise bean 373

Enterprise beans as CORBA clients 373

Code sets . 374

Chapter 28. Migrating IIOP applications from CICS TS 1.3 375

Chapter 29. Using the IIOP samples 377

Setting up the IIOP sample environment 377

Running the IIOP HelloWorld sample 381

Building the server side HelloWorld application 381

Building the client side HelloWorld application 381

Running the HelloWorld sample application 382

Running the IIOP BankAccount sample 382

Creating the VSAM file . 382

Building the server side BankAccount application 382

Building the client side BankAccount application 382

Running the BankAccount sample application 383

Part 7. Appendixes . 385

Bibliography . 387

The CICS Transaction Server for z/OS library 387

The entitlement set . 387

PDF-only books . 387

Other CICS books . 389

Books from related libraries . 389

Determining if a publication is current 389

Accessibility . 391

Index . 393

Notices . 401

Trademarks . 402

Sending your comments to IBM 403

x Java Applications in CICS

Preface

What this information is about

This information tells you how to develop and use Java™ applications and

enterprise beans in CICS®.

Who should read this information

This information is intended for:

v Experienced Java application programmers who may have little experience of

CICS, and no great need to know more about CICS than is necessary to develop

and run Java programs.

v Experienced CICS users and system programmers, who need to know about

CICS requirements for Java support.

© Copyright IBM Corp. 1999, 2006 xi

xii Java Applications in CICS

Summary of Changes

This information is based on Java Applications in CICS for CICS Transaction Server

for z/OS®, Version 2 Release 3, SC34-6238-00. Changes from that edition are

marked by vertical bars in the left margin.

This part lists briefly the changes that have been made for the following recent

releases:

v “Changes for CICS Transaction Server for z/OS, Version 3 Release 1”

v “Changes for CICS Transaction Server for z/OS, Version 2 Release 3”

v “Changes for CICS Transaction Server for z/OS, Version 2 Release 2” on page

xiv

Changes for CICS Transaction Server for z/OS, Version 3 Release 1

The more significant changes for this edition are:

v Various small changes have been made, throughout the manual, to document:

– CICS support for the IBM® Software Developer Kit for z/OS, Java 2

Technology Edition, Version 1.4.2

– CICS support for WebSphere® Application Server Version 6

v The chapter entitled “The CICS Connector for CICS TS” has been removed,

because the CICS Connector for CICS TS is not supported in this release.

v The information about using VisualAge® for Java to create Java program objects,

and the information about Java hot-pooling, has been removed, because run-time

support for Java program objects and Java hot-pooling is withdrawn in this

release. The chapter “VisualAge for Java, ET/390” and the chapter “Java

hot-pooling concepts” have been removed. The CICS Migration Guide explains

the process for migrating Java program objects to run in a JVM.

Changes for CICS Transaction Server for z/OS, Version 2 Release 3

The more significant changes for this edition were:

v Chapter 7, “Accessing data from CICS applications written in Java,” on page 41

was a new chapter. It describes the different methods that CICS Java programs,

and enterprise beans, can use to access data.

v The information about the CICS JVM was refreshed. In particular, The CICS JVM

now supports the sharing of a cache of commonly-used class files that are

already loaded, enabling faster JVM startup and reducing the cost of class

loading. See Chapter 10, “Understanding JVMs,” on page 63 and Chapter 9,

“Setting up Java support,” on page 53.

v CICS now supports Version 1.4.2 of the IBM Software Developer Kit for z/OS,

Java 2 Technology Edition. See Chapter 10, “Understanding JVMs,” on page 63.

v The CICS Object Request Broker (ORB) now supports Version 2.3 of the

Common Object Request Broker Architecture (CORBA). See Chapter 12, “IIOP

support in CICS,” on page 153 and “Migrating an EJB server to CICS

Transaction Server for z/OS, Version 3 Release 1” on page 240.

v Chapter 23, “The CCI Connector for CICS TS,” on page 307 was a new chapter.

It describes a new CICS connector that is compliant with the industry-standard

Common Client Interface (CCI) defined by the J2EE Connector Architecture

Specification. The connector helps you to build powerful Enterprise JavaBean

(EJB) server components that link to existing (non-Java) CICS programs.

© Copyright IBM Corp. 1999, 2006 xiii

v It is now possible to enable and disable CorbaServer execution environments.

This has led to better ways of updating beans in production regions—see

Chapter 22, “Updating enterprise beans in a production region,” on page 295.

v The information about CICS support for CORBA and CORBA stateless objects

was refreshed. In particular:

– “Stand-alone CICS CORBA client applications” on page 372 was a new

section.

– “Name-mangling of the OPERATION field” on page 194 was a new section.

– Chapter 27, “Stateless CORBA objects,” on page 361 was rewritten. Much

new information was added. “Developing an RMI-IIOP stateless CORBA

application” on page 369 and “CORBA interoperability” on page 372 were new

sections.

v “Class version issues with RMI-IIOP” on page 330 was a new section.

Changes for CICS Transaction Server for z/OS, Version 2 Release 2

The more significant changes for this edition were:

v Parts of Chapter 14, “Configuring CICS for IIOP,” on page 167, Chapter 16,

“What are enterprise beans?,” on page 201, and Chapter 17, “Setting up an EJB

server,” on page 229 were rewritten to describe CICS enhanced support for

enterprise beans, including an easier way to install deployed JAR files.

v Chapter 18, “Running the EJB IVP,” on page 247 was rewritten to reflect

changes to the EJB Installation Verification Program (IVP).

v Chapter 19, “Running the sample EJB applications,” on page 253 was rewritten

to reflect changes to the EJB sample applications.

v Chapter 21, “Deploying enterprise beans,” on page 291 and “The deployment

tools for enterprise beans in a CICS system” on page 291 were updated to

reflect the replacement of the EJB deployment tools.

v Support was added for Java security roles. See “Security roles” on page 341.

v Support was added for a Lightweight Directory Access Protocol (LDAP) name

server. See “Setting up an LDAP server” on page 170.

xiv Java Applications in CICS

Part 1. Java development roadmaps

This Part outlines the steps needed to implement different types of Java application

in CICS.

© Copyright IBM Corp. 1999, 2006 1

2 Java Applications in CICS

Chapter 1. JCICS application roadmap

1. Write a Java application, using the JCICS classes to access CICS services and

resources. See Chapter 6, “Java programming using JCICS,” on page 17.

2. Use the Java Virtual Machine in CICS to execute your application. See

Chapter 10, “Understanding JVMs,” on page 63 and Chapter 9, “Setting up Java

support,” on page 53.

© Copyright IBM Corp. 1999, 2006 3

4 Java Applications in CICS

Chapter 2. CICS IIOP application roadmap

1. Set up CICS as an IIOP server. See Chapter 14, “Configuring CICS for IIOP,”

on page 167.

2. Write your IIOP server application, also known as a “stateless CORBA object”.

See “Developing stateless CORBA objects” on page 361, “Creating the Interface

Definition Language (IDL)” on page 364, and “Developing an IIOP server

program” on page 365.

3. Write your client program. See “Developing the IIOP client program” on page

368.

© Copyright IBM Corp. 1999, 2006 5

6 Java Applications in CICS

Chapter 3. CICS enterprise beans roadmap

 1. Familiarize yourself with CICS support for enterprise beans by reading

Chapter 16, “What are enterprise beans?,” on page 201.

 2. Read the overview of the steps involved in setting up a CICS EJB server in

“Configuring CICS as an EJB server—overview” on page 216.

 3. Set up a basic, single-region EJB server and name server—see “Setting up a

single-region EJB server” on page 229.

 4. Test your single-region EJB server by running the EJB installation verification

program (IVP)—see Chapter 18, “Running the EJB IVP,” on page 247.

 5. Further test your EJB server by running the EJB sample applications—see

Chapter 19, “Running the sample EJB applications,” on page 253.

 6. Optionally, expand your single-region EJB server into a multi-region server

capable of load balancing—see “Setting up a multi-region EJB server” on page

237.

 7. Implement any security controls required by your system—see Chapter 25,

“Managing security for enterprise beans,” on page 333.

 8. Code your session bean. If you are not using an Integrated Development

Environment (IDE), see “Coding a session bean” on page 278.

 9. Follow the deployment process described in Chapter 21, “Deploying enterprise

beans,” on page 291, using the tools as described in “Using CICS deployment

tools for enterprise beans” on page 292.

10. Write the client program. See “Writing the client program” on page 281.

© Copyright IBM Corp. 1999, 2006 7

8 Java Applications in CICS

Part 2. Developing Java applications for CICS

This Part tells you what you need to know to develop and use CICS applications

written in Java.

© Copyright IBM Corp. 1999, 2006 9

10 Java Applications in CICS

Chapter 4. Java applications in CICS

You can write Java application programs that use CICS services and execute under

CICS control, but these programs are handled differently from procedural programs

written in the traditional CICS languages, such as COBOL and C.

The Java language is designed to be portable and architecture-neutral. The

bytecode generated by compilation is portable, but requires a machine-specific

interpreter for execution on different platforms. CICS provides this execution

environment using a Java Virtual Machine (JVM) that is executing under CICS

control.

Types of Java application in CICS

You can write the following types of Java application in CICS:

JCICS applications

You can write Java programs that use the JCICS class library. JCICS allows

you to access CICS resources such as VSAM files, CICS transient data queues

and temporary storage. It also allows you to link to CICS applications written in

other languages. Most of the functions of the EXEC CICS programming

interface are supported. JCICS is supplied in the dfjcics.jar JAR file and can

be downloaded to your workstation. It is also available with some releases of

VisualAge for Java.

 JCICS applications are run in the CICS JVM. You can read more about JCICS

in “The JCICS class library” on page 17.

Stateless CORBA objects

Stateless CORBA objects are Java server applications that communicate with a

client application using the IIOP protocol. No state is maintained in object

attributes between successive invocations of methods; state is initialized at the

start of each method call and referenced by explicit parameters.

 Stateless CORBA objects can receive inbound requests from a client and can

also make outbound IIOP requests.

 Method invocations may participate in Object Transaction Service (OTS)

distributed transactions. If a client calls an IIOP application within the scope

of an OTS transaction, information about the transaction flows as an extra

parameter on the IIOP call. If a target stateless CORBA object implements the

CosTransactions::TransactionalObject interface, the object is treated as

transactional.

Note: An OTS transaction is a distributed unit of work, not a CICS transaction

instance or resource definition.

 Stateless CORBA objects can use the JCICS API to interact with CICS.

 CICS stateless CORBA objects execute in the CICS JVM.

 You can read more about CICS stateless CORBA objects in Chapter 27,

“Stateless CORBA objects,” on page 361.

Enterprise beans

Enterprise beans are portable Java components that comply with Sun

Microsystems’ Enterprise JavaBeans™ Specification, Version 1.1. CICS has

implemented these interfaces by mapping them to underlying CICS services.

© Copyright IBM Corp. 1999, 2006 11

Enterprise beans can link to other CICS applications using connectors. You

can also develop enterprise beans that use the JCICS class library to access

CICS services or programs directly, but these applications will not be portable to

a non-CICS EJB-compliant server.

 The Enterprise JavaBeans (EJB) specification defines transactional distributed

objects that communicate using the Java Remote Method Invocation (RMI)

interface. CICS supports RMI over IIOP, mediated using a CORBA Object

Request Broker (ORB).

 Enterprise beans execute in the CICS JVM.

 You can read more about Enterprise beans in Chapter 16, “What are enterprise

beans?,” on page 201.

Table 1 shows the features that can be used in the different types of Java

application in CICS:

 Table 1. Java application features

Feature

Non-IIOP CICS

appl.

CICS stateless

CORBA object

CICS session

bean

Outbound IIOP YES YES YES

Inbound IIOP NO YES YES

APPC/MRO outbound UOW YES YES YES

APPC/MRO inbound UOW YES NO NO

EXEC CICS SYNCPOINT

UOW

YES NO NO

Outbound OTS transaction NO YES YES

Inbound OTS transaction NO YES YES

Container managed OTS

transaction

NO NO YES

Bean managed OTS

transaction

NO NO YES

Factory publication to JNDI NO YES YES

Application Metadata NO NO YES

State managed NO NO YES

Outbound Secure Sockets

Layer (SSL)

YES YES YES

Inbound Secure Sockets Layer

(SSL)

NO YES YES

Assertions YES YES YES

12 Java Applications in CICS

Chapter 5. What you need to know about CICS

CICS is a transaction processing subsystem. This means that it provides services

for a user to run applications online, by request, at the same time as many other

users are submitting requests to run the same applications, using the same files

and programs. CICS manages the sharing of resources, integrity of data, and

prioritization of execution, while maintaining fast response times.

A CICS application is a collection of related programs that together perform a

business operation, such as processing a product order or preparing a company

payroll. CICS applications execute under CICS control, using CICS services and

interfaces to access programs and files.

CICS applications are run by submitting a transaction request. The term

transaction has a special meaning in CICS; “CICS transactions” explains the

difference from the more common industry usage. Execution of the transaction

consists of running one or more application programs that implement the required

function. In CICS documentation you may find CICS application programs

sometimes simply called programs, and sometimes the term transaction is used to

imply the processing done by the application programs.

To develop and run CICS applications, you need to understand the relationship

between CICS programs, transactions, and tasks. These terms are used throughout

CICS documentation and appear in many programming commands.

CICS transactions

A transaction is a piece of processing initiated by a single request. The request is

typically made by an end-user at a terminal. However, it could be made from a Web

page, from a remote workstation program, or from an application in another CICS

region; or it might be triggered automatically at a predefined time. The CICS

Internet Guide and the CICS External Interfaces Guide describe different ways of

running CICS transactions.

A single transaction consists of one or more application programs that, when run,

carry out the processing needed.

However, the term transaction is used in CICS to mean both a single event and all

other transactions of the same type. You describe each transaction-type to CICS

with a TRANSACTION resource definition. This definition gives the transaction type

a name (the transaction identifier, or TRANSID) and tells CICS several things about

the work to be done, such as which program to invoke first, and what kind of

authentication is required throughout the execution of the transaction.

You run a transaction by submitting its TRANSID to CICS. CICS uses the

information recorded in the TRANSACTION definition to establish the correct

execution environment, and starts the first program.

The term transaction is now used extensively in the IT industry to describe a unit

of recovery or what CICS calls a unit of work. This is typically a complete logical

operation that is recoverable; it can be committed or backed out as an entirety as a

result of a programmed command or of system failure. In many cases, the scope of

a CICS transaction is also a single unit of work, but you should be aware of the

difference in meaning when reading CICS documentation.

© Copyright IBM Corp. 1999, 2006 13

CICS tasks

You will also see the word task used extensively in CICS documentation. This word

has a specific meaning in CICS. When CICS receives a request to run a

transaction, it starts a new task that is associated with this one instance of the

execution of the transaction type. That is, a CICS task is one execution of a

transaction, with its own private set of data, usually on behalf of a specific user. You

can also consider a task as a thread. Tasks are dispatched by CICS according to

their priority and readiness. When the transaction completes, the task is terminated.

CICS application programs

You write a CICS program in much the same way as you write any other program.

You can use COBOL, C, C++ , Java, PL/I, or assembler language to write CICS

application programs. Most of the processing logic is expressed in standard

language statements, but to request CICS services you must use one of the

following:

v “EXEC CICS” commands provided by the CICS application programming

interface (API)

v The Java class library for CICS (JCICS)

v The C++ class library for CICS

The use of the “EXEC CICS” API is described in the CICS Application Programming

Reference and the CICS System Programming Reference. It can be used in

COBOL, C, C++, PL/I, or assembler programs. It cannot be used in Java programs.

In Java programs, you can use the JCICS classes to access CICS services and link

to CICS application programs written in other languages. JCICS is described in

“The JCICS class library” on page 17. (The types of Java program that you can

write are listed in “Types of Java application in CICS” on page 11.)

You can write enterprise beans that use the interfaces defined in Sun Microsystem’s

Enterprise JavaBeans Specification, Version 1.1. CICS implements this specification

by mapping program requests transparently to underlying CICS services. (You can

also write enterprise beans that use the JCICS classes to call CICS services

directly, but if you do so your beans will not be portable to non-CICS servers.)

CICS services

CICS provides the following services, which Java programs can access through the

JCICS programming interface. CICS services managers traditionally have the word

“control” in their titles—for example, “terminal control” and “program control”. You

will find these terms used extensively in CICS publications:

Data management services

CICS provides:

v Record-level sharing, with integrity, in accessing Virtual Storage Access

Method (VSAM) datasets. CICS logs activity to support:

– Data backout (in the case of transaction or system failure)

– Forward recovery (in the case of media failure)

Management of VSAM data is provided by CICS File Control.

CICS also implements two proprietary file structures, and provides

commands to manipulate them:

Temporary Storage

Temporary storage (TS) is a means of making data readily available

14 Java Applications in CICS

to multiple transactions. Data is kept in queues, which are created

as required by programs. Queues can be accessed sequentially or

by item number.

 Temporary storage queues can reside in main memory, or be written

to a storage device.

 A temporary storage queue can be thought of as a named

scratch-pad.

Transient Data

Transient data (TD) is also available to multiple transactions, and is

kept in queues. However, unlike TS queues, TD queues must be

predefined and can only be read sequentially. Each item is removed

from the queue when it is read.

 Transient data queues are always written to a dataset. You can

define a transient data queue so that writing a specific number of

items to it acts as a trigger to start a specific transaction. (The

triggered transaction might, for example, process the queue.)

v Access to data in other databases (including DB2®), through interfaces with

database products.

Communications services

CICS provides commands that give access to a wide range of

terminals—displays, printers, and workstations—using SNA and TCP/IP

protocols. Management of SNA and TCP/IP networks is provided by CICS

terminal control.

 You can write programs that use Advanced Program-to-Program

Communication (APPC) commands to start and communicate with other

programs in remote systems, using SNA protocols. CICS APPC implements the

peer-to-peer distributed application model.

 CICS also provides an Object Request Broker (ORB) to implement the inbound

and outbound IIOP protocols defined by the Common Object Request Broker

Architecture (CORBA). The ORB supports requests to execute Java stateless

objects and enterprise beans.

 The following CICS proprietary communications services are provided:

Function shipping

Program requests to access resources (files, queues, and programs)

that are defined as existing on remote CICS regions are automatically

routed by CICS to the owning region.

Distributed program link (DPL)

Program-link requests for a program defined as existing on a remote

CICS region are automatically routed to the owning region. CICS

provides commands to maintain the integrity of the distributed

application.

Asynchronous processing

CICS provides commands to allow a program to start another

transaction in the same, or in a remote, CICS region and optionally

pass data to it. The new transaction is scheduled independently, in a

new task. This function is similar to the fork operation provided by other

software products.

Transaction routing

Requests to run transactions that are defined as existing on remote

Chapter 5. What you need to know about CICS 15

CICS regions are automatically routed to the owning region. Responses

to the end-user are routed back to the region that received the request.

Unit of work services

When CICS creates a new task to run a transaction, a new unit of work (UOW)

is started automatically. (Thus CICS does not provide a BEGIN command,

because one is not required.) CICS transactions are always executed

in-transaction.

 CICS provides a SYNCPOINT command to commit or roll back recoverable

work done. When the syncpoint completes, CICS automatically starts another

unit of work. If you terminate your program without issuing a SYNCPOINT

command, CICS takes an implicit syncpoint and attempts to commit the

transaction.

 The scope of the commit includes all CICS resources that have been defined as

recoverable, and any other resource managers that have registered an interest

through interfaces provided by CICS.

 If you write enterprise beans using transaction services provided by commands

defined by the Java Transaction Service (JTS), these commands (including

BEGIN) are mapped by CICS to its unit of work services.

Program services

CICS provides commands that enable a program to link or transfer control to

another program, and return.

Diagnostic services

CICS provides commands that enable you to trace programs and produce

dumps.

Other services

CICS provides other services, such as journaling, timer, and storage

management, that are not available through the JCICS interface. These are

described in the CICS Application Programming Guide.

16 Java Applications in CICS

Chapter 6. Java programming using JCICS

You can write Java application programs that use CICS services and execute under

CICS control.

You can write Java programs on a workstation, or in the z/OS UNIX® System

Services shell. You can use any editor of your choice, or a visual composition

environment such as WebSphere Studio Application Developer.

CICS provides a Java class library, known as JCICS, supplied in the dfjcics.jar

JAR file. JCICS is the Java equivalent of the EXEC CICS application programming

interface (API) that you would use with other CICS supported languages, such as

COBOL. It allows you to access CICS resources and integrate your Java programs

with programs written in other languages. Most of the functions of the EXEC CICS

API are supported. For a description of the JCICS API, see “The JCICS class

library.”

The Java language is designed to be portable and architecture-neutral. The

bytecode generated by compilation is portable, but requires a machine-specific

interpreter for execution on different platforms. CICS provides this execution

environment by means of a Java Virtual Machine (JVM) that executes under CICS

control. You can read about the CICS JVM in Chapter 10, “Understanding JVMs,”

on page 63.

The JCICS class library

The Java class library for CICS, JCICS, supports most of the functions of the EXEC

CICS API commands. These are described in “JCICS command reference” on page

21.

The JCICS classes are fully documented in JAVADOC that is generated from the

class definitions. This is available through the CICS Information Center, and can be

found in the JCICS Class Reference.

Translation

There is no need for a CICS translator for Java programs.

JavaBeans

Some of the classes in JCICS may be used as JavaBeans, which means that they

can be customized in an application development tool such as WebSphere Studio

Application Developer, serialized, and manipulated using the JavaBeans API. The

JavaBeans in JCICS are currently:

v Program

v ESDS

v KSDS

v RRDS

v TDQ

v TSQ

v AttachInitiator

v EnterRequest

© Copyright IBM Corp. 1999, 2006 17

These beans do not define any events; they consist of properties and methods.

They can be instantiated at run-time in one of three ways:

1. By calling the new method for the class itself. (This is the recommended way.)

2. By calling Beans.instantiate() for the name of the class, with property values

set manually.

3. By calling Beans.instantiate() of a .ser file, with property values set at design

time.

If either of the first two options are chosen, then the property values, including the

name of the CICS resource, must be set by invoking the appropriate “set” methods

at run-time.

Library structure

Each JCICS library component falls into one of four categories:

v Interfaces

v Classes

v Exceptions

v Errors

Interfaces

Some interfaces are provided to define sets of constants. For example, the

TerminalSendBits interface provides a set of constants that can be used to

construct a java.util.BitSet.

Classes

The supplied classes provide most of the JCICS function. The API class is an

abstract class that provides common initialization for every class that

corresponds to a part of the CICS API, except for ABENDs and exceptions. For

example, the Task class provides a set of methods and variables that

correspond to a CICS task.

Errors and Exceptions

The Java language defines both exceptions and errors as subclasses of the

class Throwable. JCICS defines CicsError as a subclass of Error. CicsError is

the superclass for all the other CICS error classes, which are used for severe

errors.

 JCICS defines CicsException as a subclass of Exception. CicsException is the

superclass for all the CICS exception classes (including the

CicsConditionException classes such as InvalidQueueIdException, which

represents the CICS QIDERR condition).

 See “Error handling and abnormal termination” on page 23 for further

information.

CICS resources

CICS resources, such as programs or temporary storage queues, are represented

by instances of the appropriate Java class, identified by the values of various

properties such as name and, for some classes, a SYSID (the identifier of the CICS

system that owns the resource).

Resources must be defined to CICS, using the CEDA transaction or CICSPlex® SM

BAS. See the CICS Resource Definition Guide or the CICSPlex System Manager

Concepts and Planning manual for information about defining CICS resources. It is

possible to use implicit remote access by defining a resource locally to point to a

remote resource.

18 Java Applications in CICS

CICS storage requirements

Memory requirements to run Java programs are higher than for conventional

programs. Therefore:

1. You should ask your CICS system programmer to set the value of the EDSALIM

system initialization parameter to a minimum of 200MB, otherwise a

short-on-storage condition may occur.

Note that you cannot change the value of EDSALIM during CICS execution by

means of CEMT SET commands. Furthermore, dynamic changes to EDSALIM

are cataloged in the local catalog, and the value in the local catalog overrides

the EDSALIM parameter specified in the system initialization table during all

forms of restart: initial,cold, and warm. Therefore, to change EDSALIM, you

must specify it as a system initialization table override or re-initialize the CICS

catalog data sets.

2. Your CICS job should set a minimum REGION value of 400MB.

Command arguments

Many CICS programming commands pass data in a structure known as a

“communications area” (COMMAREA). An alternative, and more flexible, method of

passing data between programs, is to use a channel: channels are described in

“Channels and containers” on page 24. The COMMAREA or channel, and any other

parameters, are passed as arguments to the appropriate methods.

Many of the methods are overloaded—that is, they have different versions that take

either a different number of arguments or arguments of a different type. There may

be one method that has no arguments, or the minimum mandatory arguments, and

another that has all of the arguments. For example, there are the following different

link() methods in the Program class:

link()

This version does a simple LINK without using a COMMAREA to pass data, nor

any other options.

link(com.ibm.cics.server.CommAreaHolder)

This version does a simple LINK, using a COMMAREA to pass data but without

any other options.

link(com.ibm.cics.server.CommAreaHolder, int)

This version does a distributed LINK, using a COMMAREA to pass data and a

DATALENGTH value to specify the length of the data within the COMMAREA.

link(com.ibm.record.IByteBuffer)

This version does a LINK using an object that implements the IByteBuffer

interface of the Java Record Framework supplied with VisualAge for Java.

link(com.ibm.cics.server.Channel)

This version does a LINK using a channel to pass data in one or more

containers.

Serializable classes

The following JCICS classes are serializable and so can survive a

Passivate/Activate cycle.

v AddressResource

v AttachInitiator

v CommAreaHolder

Chapter 6. Java programming using JCICS 19

|
|
|

|
|
|

v EnterRequest

v ESDS

v File

v KeyedFile

v KSDS

v NameResource

v Program

v RemotableResource

v Resource

v RRDS

v StartRequest

v SynchronizationResource

v SyncLevel

v TDQ

v TSQ

v TSQType

System.out and System.err

For each Java-related CICS task, CICS automatically creates two Java

PrintWriters that can be used as standard out and standard error streams. The

standard out and standard error streams are public fields in the Task called out and

err.

If a CICS task is being driven from a terminal (the terminal is called a principal

facility in this case), CICS maps the standard out and standard error streams to

the task’s terminal.

If the task does not have a terminal as its principal facility, the standard out and

standard error streams are sent to System.out and System.err. System.out and

System.err are mapped to the CICS transient data queues CESO and CESE,

respectively. Your CICS system programmer creates these queues, and others used

for CICS messages, during CICS installation. You can access and print or display

these message queues using utility programs such as the DFH$TDWT sample

program described in the CICS Customization Guide. DFH$TDWT is supplied with

the CICS pregenerated system in CICSTS31.CICS.CICS.SDFHLOAD.

Threads

Only one thread (the initial thread) can access the JCICS API. You can create other

threads but you must route all requests to the JCICS API through the initial thread.

Additionally, you must ensure that all threads other than the original thread have

terminated before doing any of the following:

v link()

v xctl()

v setNextTransaction(), setNextCOMMAREA()

v commit(), rollback()

v returning an AbendException

20 Java Applications in CICS

JCICS command reference

Many of the options and services available to non-Java programs through the

EXEC CICS API are available to Java programs through JCICS. This section shows

the relationship between EXEC CICS commands and the equivalent JCICS

function. For a full description of the EXEC CICS commands, see the CICS

Application Programming Reference.

JCICS support is described under the following headings:

v “Error handling and abnormal termination” on page 23

v “CICS exception handling in Java programs”

v “APPC mapped conversations” on page 24

v “Basic Mapping Support (BMS)” on page 24

v “Channels and containers” on page 24

v “Diagnostic services” on page 27

v “Document services” on page 27

v “Environment services” on page 28

v “File services” on page 30

v “Program services” on page 33

v “Scheduling services” on page 34

v “Serialization services” on page 34

v “Storage services” on page 34

v “Temporary storage queue services” on page 34

v “Terminal services” on page 35

v “Transient data queue services” on page 35

v “Unit of work (UOW) services” on page 36

v “Web and TCP/IP services” on page 36

v “Unsupported CICS services” on page 37

CICS exception handling in Java programs

CICS ABENDs and exceptions are integrated into the Java exception-handling

architecture. All regular CICS ABENDs are mapped to a single Java exception,

AbendException, whereas each CICS condition is mapped to a separate Java

exception.

This leads to an ABEND-handling model in Java that is similar to the other

programming languages; a single handler is given control for every ABEND, and the

handler has to query the particular ABEND and then decide what to do.

If the exception representing a condition is caught by CICS itself, it is turned into an

ABEND.

Java exception-handling is fully integrated with the ABEND and condition-handling

in other languages, so that ABENDs can propagate between Java and non-Java

programs, in the standard language-independent way. A condition is mapped to an

ABEND before it leaves the program that caused or detected the condition.

However, there are several differences to the abend-handling model for other

programming languages, resulting from the nature of the Java exception-handling

architecture and the implementation of some of the technology underlying the Java

API:

v ABENDs that are considered unhandleable in other programming languages can

be caught in Java programs. These ABENDs typically occur during SYNCPOINT

Chapter 6. Java programming using JCICS 21

|

processing. To avoid these ABENDs interrupting Java applications, they are

mapped to an extension of an unchecked exception; therefore they do not have

to be declared or caught.

v Several internal CICS events, such as program termination, are also mapped to

Java exceptions and can therefore be caught by a Java application. Again, to

avoid interrupting the normal case, these are mapped to extensions of an

unchecked exception and so do not have to be caught or declared.

Note: CICS requires the Language Environment® product to be installed and active

on your OS/390® system in order to run Java applications. You should not

specify the Language Environment run-time option TRAP=OFF, because this

will disable abend handling in JCICS.

There are three CICS-related class hierarchies of exceptions:

1. CicsError, which extends java.lang.Error and is the base for AbendError and

UnknownCicsError.

2. CicsRuntimeException, which extends java.lang.RuntimeException and is in

turn extended by:

AbendException

Represents a normal CICS ABEND.

EndOfProgramException

Indicates that a linked-to program has terminated normally.

TransferOfControlException

Indicates that a program has used an xctl() method, the equivalent of the

CICS XCTL command.

3. CicsException, which extends java.lang.Exception and has the subclass:

CicsConditionException.

The base class for all CICS conditions.

CICS error-handling commands

CICS condition handling is integrated into the Java exception architecture as

described above. The way that the equivalent “EXEC CICS” command is supported

in Java is described below:

HANDLE ABEND

To handle an ABEND generated by a program in any CICS-supported language,

use a Java try-catch statement, with AbendException appearing in a catch

clause.

HANDLE CONDITION

To handle a specific condition, such as PGMIDERR, use a catch clause that

names the appropriate exception—in this case InvalidProgramException.

Alternatively, use a catch clause naming CicsConditionException, if all CICS

conditions are to be caught.

IGNORE CONDITION

This command is not relevant in Java applications.

POP and PUSH HANDLE

These commands are not relevant in Java applications. The Java exceptions

used to represent CICS ABENDs and conditions are caught by any catch block

in scope.

22 Java Applications in CICS

CICS conditions

The condition-handling model in Java is different from other CICS programming

languages.

In COBOL, you can define an exception-handling label for each condition. If that

condition occurs during the processing of a CICS command, control transfers to the

label.

In C and C++, you cannot define an exception-handling label for a condition; to

detect a condition, the RESP field in the EIB must be checked after each CICS

command.

In Java, any condition returned by a CICS command is mapped into a Java

exception. You can include all CICS commands in a try-catch block and do specific

processing for each condition, or have a single null catch clause if the particular

exception is not relevant. Alternatively, you can let the condition propagate, to be

handled by a catch clause at a larger scope.

See “JCICS exception mapping” on page 37 for a description of the relationship

between CICS conditions and Java exceptions.

Error handling and abnormal termination

 Methods JCICS class EXEC CICS commands

abend(), forceAbend() Task ABEND

ABEND

To initiate an ABEND from a Java program, invoke one of the the Task.abend()

methods. This causes an abend condition to be set in CICS and an

AbendException to be thrown. If the AbendException is not caught within a

higher level of the application object, or handled by an ABEND-handler

registered in the calling program (if any), CICS terminates and rolls back the

transaction.

 The different abend() methods are:

v abend(String abcode), which causes an ABEND with the ABEND code

abcode.

v abend(String abcode, boolean dump), which causes an ABEND with the

ABEND code abcode. If the dump parameter is false, no dump is taken.

v abend(), which causes an ABEND with no ABEND code and no dump.

ABEND CANCEL

To initiate an ABEND that cannot be handled, invoke one of the

Task.forceAbend() methods. As described above, this causes an

AbendCancelException to be thrown which can be caught in Java programs. If

you do so, you must re-throw the exception to complete ABEND_CANCEL

processing, so that, when control returns to CICS, CICS will terminate and roll

back the transaction. You should catch AbendCancelException only for

notification purposes and then re-throw it.

 The different forceAbend() methods are:

v forceAbend(String abcode), which causes an ABEND CANCEL with the

ABEND code abcode.

Chapter 6. Java programming using JCICS 23

|
|

|

|
|

|
|

|

|
|

|

|
|

v forceAbend(String abcode, boolean dump), which causes an ABEND

CANCEL with the ABEND code abcode. If the dump parameter is false, no

dump is taken.

v forceAbend(), which causes an ABEND CANCEL with no ABEND code and

no dump.

APPC mapped conversations

APPC unmapped conversation support is not available from the JCICS API.

APPC mapped conversations:

 Methods JCICS class EXEC CICS Commands

initiate() AttachInitiator ALLOCATE, CONNECT PROCESS

converse() Conversation CONVERSE

get*() methods Conversation EXTRACT ATTRIBUTES

get*() methods Conversation EXTRACT PROCESS

free() Conversation FREE

issueAbend() Conversation ISSUE ABEND

issueConfirmation() Conversation ISSUE CONFIRMATION

issueError() Conversation ISSUE ERROR

issuePrepare() Conversation ISSUE PREPARE

issueSignal() Conversation ISSUE SIGNAL

receive() Conversation RECEIVE

send() Conversation SEND

flush() Conversation WAIT CONVID

Basic Mapping Support (BMS)

 Methods JCICS class EXEC CICS Commands

sendControl() TerminalPrincipalFacility SEND CONTROL

sendText() TerminalPrincipalFacility SEND Text

Not supported SEND MAP, RECEIVE MAP

Channels and containers

For introductory information about channels and containers, and guidance about

using channels in non-Java applications, see the CICS Application Programming

Guide.

CICS provides the following JCICS classes that CICS Java programs can use to

pass and receive channels:

v com.ibm.cics.server.CCSIDErrorException

v com.ibm.cics.server.Channel

v com.ibm.cics.server.ChannelErrorException

v com.ibm.cics.server.Container

v com.ibm.cics.server.ContainerErrorException

v com.ibm.cics.server.ContainerIterator

24 Java Applications in CICS

|
|
|

|
|

|

|
|
|

|
|
|
|
|
|
|
|

Note: You can use channel- and container-related JCICS commands when writing

CICS enterprise beans. However, CICS doesn’t support the transmission of

channels over IIOP request streams. This means that you cannot, for

example, pass a channel to an enterprise bean on a remote region.

Table 2 lists the classes and methods that implement JCICS support for channels

and containers.

 Table 2. JCICS support for channels and containers

Methods JCICS class EXEC CICS Commands

containerIterator() Channel STARTBROWSE CONTAINER

createContainer() Channel

deleteContainer() Channel DELETE CONTAINER CHANNEL

getContainer() Channel

getName() Channel

delete() Container DELETE CONTAINER CHANNEL

get(), getLength() Container GET CONTAINER CHANNEL

[NODATA]

getName() Container

put() Container PUT CONTAINER CHANNEL

getOwner() ContainerIterator

hasNext() ContainerIterator

next() ContainerIterator GETNEXT CONTAINER

BROWSETOKEN

remove() ContainerIterator

link() Program LINK

xctl() Program XCTL

setNextChannel() TerminalPrincipalFacility RETURN CHANNEL

issue() StartRequest START CHANNEL

createChannel() Task

getCurrentChannel() Task ASSIGN CHANNEL

containerIterator() Task STARTBROWSE CONTAINER

The CICS condition CHANNELERR results in a ChannelErrorException being

thrown; the CONTAINERERR CICS condition results in a ContainerErrorException;

the CCSIDERR CICS condition results in a CCSIDErrorException.

Creating channels and containers in JCICS

To create a channel, use the createChannel() method of the Task class. For

example:

Task t=Task.getTask();

Channel custData = t.createChannel("Customer_Data");

The string supplied to the createChannel method is the name by which the Channel

object is known to CICS. (The name is padded with spaces to 16 characters, to

conform to CICS naming conventions.)

To create a new container in the channel, use the Channel’s createContainer()

method. For example:

Chapter 6. Java programming using JCICS 25

|
|
|
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|

|
|
|

|
|

|
|
|

|
|

Container custRec = custData.createContainer("Customer_Record");

The string supplied to the createContainer() method is the name by which the

Container object is known to CICS. (The name is padded with spaces to 16

characters, if necessary, to conform to CICS naming conventions.) If a container of

the same name already exists in this channel, a ContainerErrorException is

thrown.

Putting data into a container

To put data into a Container object, use the Container.put() method. Data can be

added to a container as a byte array or a string. For example:

String custNo = "00054321";

byte[] custRecIn = custNo.getBytes();

custRec.put(custRecIn);

Or simply:

custRec.put("00054321");

Passing a channel to another program or task

To pass a channel on a program-link or transfer program control (XCTL) call, use

the link() and xctl() methods of the Program class, respectively:

programX.link(custData);

programY.xctl(custData);

To set the next channel on a program-return call, use the setNextChannel() method

of the TerminalPrincipalFacility class:

terminalPF.setNextChannel(custData);

To pass a channel on a START request, use the issue method of the StartRequest

class:

startrequest.issue(custData);

Receiving the current channel

It is not necessary for a program to receive its current channel explicitly—see

“Browsing the current channel.” However, a program can get its current channel

from the current task; this enables it to extract containers by name:

Task t = Task.getTask();

Channel custData = t.getCurrentChannel();

if (custData != null) {

 Container custRec = custData.getContainer("Customer_Record");

} else {

 System.out.println("There is no Current Channel");

}

Getting data from a container

Use the Container.get() method to read the data in a container into a byte array:

byte[] custInfo = custRec.get();

Browsing the current channel

A JCICS program that is passed a channel can access all of the Container objects

without receiving the channel explicitly. To do this, it uses a ContainerIterator

object. (The ContainerIterator class implements the java.util.Iterator

interface.) When a Task object is instantiated from the current task, its

containerIterator() method returns an Iterator for the current channel, or null if

there is no current channel. For example:

26 Java Applications in CICS

|

|
|
|
|
|

|
|
|

|
|
|

|

|

|
|
|

|
|
|

|
|

|

|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|

Task t = Task.getTask();

ContainerIterator ci = t.containerIterator();

While (ci.hasNext()) {

 Container custData = ci.next();

 // Process the container...

}

A JCICS example

Figure 1 shows a Java class called Payroll that calls a COBOL server program

named PAYR. The Payroll class uses the JCICS com.ibm.cics.server.Channel and

com.ibm.cics.server.Container classes to do the same things that a non-Java

client program would use EXEC CICS commands to do.

Diagnostic services

 Methods JCICS class EXEC CICS Commands

Not supported DUMP

enterTrace() EnterRequest ENTER

enableTrace(), disableTrace() Region, Task TRACE

Document services

This section describes JCICS support for the commands in the DOCUMENT

application programming interface.

import com.ibm.cics.server.*;

public class Payroll {

 ...

 Task t=Task.getTask();

 // create the payroll_2004 channel

 Channel payroll_2004 = t.createChannel("payroll-2004");

 // create the employee container

 Container employee = payroll_2004.createContainer("employee");

 // put the employee name into the container

 employee.put("John Doe");

 // create the wage container

 Container wage = payroll_2004.createContainer("wage");

 // put the wage into the container

 wage.put("2000");

 // Link to the PAYROLL program, passing the payroll_2004 channel

 Program p = new Program();

 p.setName("PAYR");

 p.link(payroll_2004);

 // Get the status container which has been returned

 Container status = payroll_2004.getContainer("status");

 // Get the status information

 byte[] payrollStatus = status.get();

 ...

}

Figure 1. Java class that uses the JCICS com.ibm.cics.server.Channel and

com.ibm.cics.server.Container classes to pass a channel to a COBOL server program

Chapter 6. Java programming using JCICS 27

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

You cannot use document support with the VisualAge for Java, Enterprise Edition

for OS/390, bytecode binder.

Class Document maps to the EXEC CICS DOCUMENT API. Constructors for class

DocumentLocation map to the AT and TO keywords of the EXEC CICS DOCUMENT

API. Setters and getters for class SymbolList map to the SYMBOLLIST, LENGTH,

DELIMITER, and UNESCAPE keywords of the EXEC CICS DOCUMENT API.

 Methods JCICS class EXEC CICS Commands

create*() Document DOCUMENT CREATE

append*() Document DOCUMENT INSERT

insert*() Document DOCUMENT INSERT

addSymbol() Document DOCUMENT SET

setSymbolList() Document DOCUMENT SET

retrieve*() Document DOCUMENT RETRIEVE

get*() Document DOCUMENT

Environment services

CICS environment services provide access to CICS data areas, parameters, and

resource attributes that are relevant to an application program. The EXEC CICS

commands and options that have equivalent JCICS support are:

v ADDRESS

v ASSIGN

v INQUIRE SYSTEM

v INQUIRE TASK

v INQUIRE TERMINAL/NETNAME

ADDRESS

See the CICS Application Programming Reference manual for information about the

EXEC CICS ADDRESS command. The following support is provided for the

ADDRESS options.

ACEE The Access Control Environment Element (ACEE) is created by an external

security manager when a CICS user signs on. This option not supported in

JCICS.

COMMAREA

A COMMAREA contains user data that is passed with a command. The

COMMAREA pointer is passed automatically to the linked program by the

CommAreaHolder argument . See “Command arguments” on page 19 for

more information.

CWA The Common Work Area (CWA) contains global user data, sharable

between tasks. This option is not supported in JCICS.

EIB contains information about the CICS command last executed. Access to EIB

values is provided by methods on the appropriate objects. For example,

eibtrnid

is returned by the getTransactionName() method of the Task class.

eibaid is returned by the getAIDbyte() method of the

TerminalPrincipalFacility class.

28 Java Applications in CICS

eibcposn

is returned by the getRow() and getColumn() methods of the Cursor

class.

TCTUA

The Terminal Control Table User Area (TCTUA) contains user data

associated with the terminal that is driving the CICS transaction (the

principal facility). This area is used to pass information between application

programs, but only if the same terminal is associated with the application

programs involved. The contents of the TCTUA can be obtained using the

getTCTUA() method of the TerminalPrincipalFacility class.

TWA The Transaction Work Area (TWA) contains user data that is associated

with the CICS task. This area is used to pass information between

application programs, but only if they are in the same task. A copy of the

TWA can be obtained using the getTWA() method of the Task class.

ASSIGN

See the CICS Application Programming Reference manual for information about the

EXEC CICS ASSIGN command. The following support is provided for the ASSIGN

options.

 Methods JCICS class EXEC CICS Commands

getABCODE() AbendException ASSIGN ABCODE

getAPPLID() Region ASSIGN APPLID

getCurrentChannel() Task ASSIGN CHANNEL

getCWA() Region ASSIGN CWALENG

getName() TerminalPrincipalFacility or

ConversationPrincipalFacility

ASSIGN FACILITY

getFCI() Task ASSIGN FCI

getNetName() TerminalPrincipalFacility or

ConversationPrincipalFacility

ASSIGN NETNAME

getPrinSysid() TerminalPrincipalFacility or

ConversationPrincipalFacility

ASSIGN PRINSYSID

getProgramName() Task ASSIGN PROGRAM

getQNAME() Task ASSIGN QNAME

getSTARTCODE() Task ASSIGN STARTCODE

getSysid() Region ASSIGN SYSID

getTCTUA() TerminalPrincipalFacility ASSIGN TCTUALENG

getTERMCODE() TerminalPrincipalFacility ASSIGN TERMCODE

getTWA() Task ASSIGN TWALENG

getUserid(), Task.getUSERID() Task, TerminalPrincipalFacility

or

ConversationPrincipalFacility

ASSIGN USERID

No other ASSIGN options are supported.

Chapter 6. Java programming using JCICS 29

|||

INQUIRE SYSTEM

The following support is provided for the INQUIRE SYSTEM options:

 Methods JCICS class EXEC CICS Commands

getAPPLID(), getSYSID() Region INQUIRE SYSTEM

No other INQUIRE SYSTEM options are supported.

INQUIRE TASK

The following support is provided for the INQUIRE TASK options:

 Methods JCICS class EXEC CICS Commands

getAPPLID(), getSYSID() Task INQUIRE TASK FACILITY

getSTARTCODE() Task INQUIRE TASK

STARTCODE

get TransactionName() Task INQUIRE TASK

TRANSACTION

getUserid() Task INQUIRE TASK USERID

Notes:

FACILITY

You can find the name of the task’s principal facility by calling the

getName() method on the task’s principal facility, which can in turn

be found by calling the getPrincipalFacility() method on the

current Task object.

FACILITYTYPE

You can determine the type of facility by using the Java instanceof

operator to check the class of the returned object reference.

No other INQUIRE TASK options are supported.

INQUIRE TERMINAL and INQUIRE NETNAME

The following support is provided for INQUIRE TERMINAL and INQUIRE

NETNAME options:

 Methods JCICS class EXEC CICS Commands

Terminal.getUser(),

getUserid()

Terminal,

ConversationalPrincipalFacility

INQUIRE TERMINAL USERID

INQUIRE NETNAME USERID

Note: You can also find the USERID value by calling the getUSERID() method on

the current Task object, or on the object representing the task’s principal

facility

No other INQUIRE TERMINAL or NETNAME options are supported.

File services

CICS supports the following types of files:

v Key Sequenced Data Sets (KSDS)

30 Java Applications in CICS

v Entry Sequenced Data Sets (ESDS)

v Relative Record Data Sets (RRDS)

KSDS and ESDS files can have alternate (or secondary) indexes. (CICS does not

support access to an RRDS file through a secondary index.) Secondary indexes are

treated by CICS as though they were separate KSDS files in their own right, which

means they have separate FD entries.

There are a few differences between accessing KSDS, ESDS (primary index), and

ESDS (secondary index) files, which means that you cannot always use a common

interface.

Records can be read, updated, deleted, and browsed in all types of file, with the

exception that records cannot be deleted from an ESDS file.

See the CICS Application Programming Guide for more information about datasets.

Java commands that read data support only the equivalent of the SET option on

EXEC CICS commands. The data returned is automatically copied from CICS

storage to a Java object.

The Java interfaces relating to File Control are in five categories:

File The superclass for the other file classes; contains methods common to all

file classes.

KeyedFile

Contains the interfaces common to a KSDS file accessed through the

primary index, a KSDS file accessed through a secondary index, and an

ESDS file accessed through a secondary index.

KSDS Contains the interface specific to KSDS files.

ESDS Contains the interface specific to ESDS files accessed through Relative

Byte Address (RBA—its primary index).

RRDS Contains the interface specific to RRDS files accessed through Relative

Record Number (RRN—its primary index).

For each file, there are two objects that can be operated on—the File object and

the FileBrowse object. The File object represents the file itself and can be used

with methods to perform the following operations:

v DELETE

v READ

v REWRITE

v UNLOCK

v WRITE

v STARTBR

A File object is created by the user application explicitly instantiating the desired

file class. The FileBrowse object represents a browse operation on a file. (There

can be more than one active browse against a specific file at any time, each

browse being distinguished by a REQID.) Methods can be invoked against a file

browse object to perform the following operations:

v ENDBR

v READNEXT

Chapter 6. Java programming using JCICS 31

v READPREV

v RESETBR

A FileBrowse object is not instantiated explicitly by the user application; it is created

and returned to the user class by the methods that perform the STARTBR

operation.

The following tables show how the JCICS classes and methods map to the EXEC

CICS commands for each type of CICS file (and index). In these tables, the JCICS

classes and methods are shown in the form class.method(). For example,

KeyedFile.read() refers to the read() method in the KeyedFile class.

This table shows the classes and methods for keyed files:

 KSDS primary or secondary

index

ESDS secondary index CICS File command

KeyedFile.read() KeyedFile.read() READ

KeyedFile.readForUpdate() KeyedFile.readForUpdate() READ UPDATE

KeyedFile.readGeneric() KeyedFile.readGeneric() READ GENERIC

KeyedFile.rewrite() KeyedFile.rewrite() REWRITE

KSDS.write() KSDS.write() WRITE

KSDS.delete() DELETE

KSDS.deleteGeneric() DELETE GENERIC

File.unlock() File.unlock() UNLOCK

KeyedFile.startBrowse() KeyedFile.startBrowse() START BROWSE

KeyedFile.startGenericBrowse() KeyedFile.startGenericBrowse() START BROWSE

GENERIC

KeyedFileBrowse.next() KeyedFileBrowse.next() READNEXT

KeyedFileBrowse.previous() KeyedFileBrowse.previous() READPREV

KeyedFileBrowse.reset() KeyedFileBrowse.reset() RESET BROWSE

FileBrowse.end() FileBrowse.end() END BROWSE

This table shows the classes and methods for non-keyed files. ESDS and RRDS

are accessed by their primary indexes:

 ESDS primary index RRDS primary index CICS File command

ESDS.read() RRDS.read() READ

ESDS.readForUpdate() RRDS.readForUpdate() READ UPDATE

ESDS.rewrite() RRDS.rewrite() REWRITE

ESDS.write() RRDS.write() WRITE

RRDS.delete() DELETE

File.unlock() File.unlock() UNLOCK

ESDS.startBrowse() RRDS.startBrowse() START BROWSE

ESDS_Browse.next() RRDS_Browse.next() READNEXT

ESDS_Browse.previous() RRDS_Browse.previous() READPREV

ESDS_Browse.reset() RRDS_Browse.reset() RESET BROWSE

FileBrowse.end() FileBrowse.end() END BROWSE

32 Java Applications in CICS

Data to be written to a file must be in a Java byte array.

Data is read from a file into a RecordHolder object; the storage is provided by CICS

and will be automatically released at the end of the program.

The KEYLENGTH does not need to be explicitly specified on any File method; the

length used will be the actual length of the key passed. When a FileBrowse object

is created, it contains the keylength of the key specified on the startBrowse

method, and this length is passed to CICS on subsequent browse requests against

that object.

It is not necessary for the user to provide a REQID for a browse operation; each

browse object will contain a unique REQID which is automatically used for all

subsequent browse requests against that browse object.

Program services

JCICS support for the CICS program control commands is described below:

 Methods JCICS class EXEC CICS Commands

link() Program LINK

SetNextTransaction(),

setNextCOMMAREA(),

setNextChannel()

TerminalPrincipalFacility RETURN

xctl() Program XCTL

Not supported SUSPEND

LINK and XCTL

You can transfer control to another program that is defined to CICS using the

link() and xctl() methods. The target program can be in any language

supported by CICS.

 If you use the xctl() method, a TransferOfControlException is thrown to the

issuing program, even if it completes successfully.

RETURN

Only the pseudoconversational aspects of this command are supported. It is not

necessary to make a CICS call simply to return; the application can simply

terminate as normal. The pseudoconversational functions are supported by

methods in the TerminalPrincipalFacility class: setNextTransaction() is

equivalent to using the TRANSID option of RETURN; setNextCOMMAREA() is

equivalent to using the COMMAREA option; while setNextChannel() is

equivalent to using the CHANNEL option. These methods can be invoked at

any time during the running of the program, and take effect when the program

terminates.

Note: The length of the COMMAREA provided is used as the LENGTH value for

CICS. This value may not exceed 32 500 bytes if the COMMAREA is to be

passed between any two CICS servers (for any combination of

product/version/release).

Chapter 6. Java programming using JCICS 33

|
|
|

||

|
|

Scheduling services

 Methods JCICS class EXEC CICS Commands

cancel() StartRequest CANCEL

retrieve() Task RETRIEVE

issue() StartRequest START

To define what is to be retrieved by the Task.retrieve() method, use a

java.util.BitSet object. The com.ibm.cics.server.RetrieveBits class defines the

bits which can be set in the BitSet object; they are:

v RetrieveBits.DATA

v RetrieveBits.RTRANSID

v RetrieveBits.RTERMID

v RetrieveBits.QUEUE

These correspond to the options on the EXEC CICS RETRIEVE command.

The Task.retrieve() method retrieves up to four different pieces of information in a

single invocation, depending on the settings of the RetrieveBits. The DATA,

RTRANSID, RTERMID and QUEUE data are placed in a RetrievedData object,

which is held in a RetrievedDataHolder object. The following example retrieves the

data and transid:

BitSet bs = new BitSet();

bs.set(RetrieveBits.DATA, true);

bs.set(RetrieveBits.RTRANSID, true);

RetrievedDataHolder rdh = new RetrievedDataHolder();

t.retrieve(bs, rdh);

byte[] inData = rdh.value.data;

String transid = rdh.value.transId;

Serialization services

 Methods JCICS class EXEC CICS Commands

dequeue() SynchronisationResource DEQ

enqueue(), tryEnqueue() SynchronisationResource ENQ

Storage services

No support is provided for explicit storage management using CICS services (such

as EXEC CICS GETMAIN). You should find that the standard Java storage

management facilities are sufficient to meet the needs for task-private storage.

Sharing of data between tasks must be accomplished using CICS resources.

Names are generally represented as Java strings or byte arrays; you must ensure

that these are of the necessary length.

Temporary storage queue services

 Methods JCICS class EXEC CICS Commands

delete() TSQ DELETEQ TS

readItem(), readNextItem() TSQ READQ TS

34 Java Applications in CICS

|||

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|

Methods JCICS class EXEC CICS Commands

writeItem(), rewriteItem()

writeItemConditional()

rewriteItemConditional()

TSQ WRITEQ TS

JCICS support for the temporary storage commands is described below.

DELETEQ TS

You can delete a temporary storage queue (TSQ) using the delete() method in

the TSQ class.

READQ TS

The CICS INTO option is not supported in Java programs. You can read a

specific item from a TSQ using the readItem() and readNextItem methods in

the TSQ class. These methods take an ItemHolder object as one of their

arguments, which will contain the data read in a byte array. The storage for this

byte array is created by CICS and is garbage-collected at the end of the

program.

WRITEQ TS

You must provide data to be written to a temporary storage queue in a Java

byte array. The writeItem() and rewriteItem() methods suspend if a

NOSPACE condition is detected, and wait until space is available to write the

data to the queue. The writeItemConditional() and rewriteItemConditional()

methods do not suspend in the case of a NOSPACE condition, but return the

condition immediately to the application as a NoSpaceException.

Terminal services

 Methods JCICS class EXEC CICS Commands

converse() TerminalPrincipalFacility CONVERSE

Not supported HANDLE AID

receive() TerminaPrincipalFacility RECEIVE

send() TerminaPrincipalFacility SEND

Not supported WAIT TERMINAL

If a task has a terminal as a principal facility, CICS automatically creates two Java

PrintWriters that can be used as standard output and standard error streams.

They are mapped to the task’s terminal. The two streams, called out and err, are

public files in the Task object and can be used just like System.out and System.err.

Data to be sent to a terminal must be provided in a Java byte array. Data is read

from the terminal into a DataHolder object. CICS provides the storage for the

returned data and it will be deallocated when the program ends.

Transient data queue services

 Methods JCICS class EXEC CICS Commands

delete() TDQ DELETEQ TD

readData(), readDataConditional() TDQ READQ TD

writeData() TDQ WRITEQ TD

Chapter 6. Java programming using JCICS 35

JCICS support for the transient data commands is described below. All options are

supported except INTO.

DELETEQ TD

You can delete a transient data queue (TDQ) using the delete() method in the

TDQ class.

READQ TD

The CICS INTO option is not supported in Java programs. You can read from a

TDQ using the readData() or the readDataConditional() method in the TDQ

class. These methods take as a parameter an instance of a DataHolder object

that will contain the data read in a byte array. The storage for this byte array is

created by CICS and is garbage-collected at the end of the program.

 The readDataConditional() method drives tthe CICS NOSUSPEND logic. If a

QBUSY condition is detected, it is returned to the application immediately as a

QueueBusyException.

 The readData() method suspends if it attempts to access a record in use by

another task and there are no more committed records.

WRITEQ TD

You must provide data to be written to a TDQ in a Java byte array.

Unit of work (UOW) services

 Methods JCICS class EXEC CICS Commands

commit(), rollback() Task SYNCPOINT

Web and TCP/IP services

Getters in classes HttpHeader, NameValueData, and FormField return httpheader,

name/value pairs and formfield field values for the appropriate API commands.

 Methods JCICS class EXEC CICS Commands

get*() CertificateInfo EXTRACT CERTIFICATE / EXTRACT TCPIP

get*() HttpRequest EXTRACT WEB

getHeader() HttpRequest WEB READ HTTPHEADER

getFormField() HttpRequest WEB READ FORMFIELD

getContent() HttpRequest WEB RECEIVE

startBrowseHeader() HttpRequest WEB STARTBROWSE HTTPHEADER

getNextHeader() HttpRequest WEB READNEXT HTTPHEADER

endBrowseHeader() HttpRequest WEB ENDBROWSE HTTPHEADER

startBrowseFormfield() HttpRequest WEB STARTBROWSE FORMFIELD

getNextFormfield() HttpRequest WEB READNEXT FORMFIELD

endBrowseFormfield() HttpRequest WEB ENDBROWSE FORMFIELD

writeHeader() HttpResponse WEB WRITE

getDocument() HttpResponse WEB RETRIEVE

getCurrentDocument() HttpResponse WEB RETRIEVE

sendDocument() HttpResponse WEB SEND

36 Java Applications in CICS

Note: Use the method get HttpRequestInstance() to obtain the HttpRequest

object.

Each incoming HTTP request processed by CICS Web support includes an HTTP

header. If the request uses the POST HTTP verb it also includes document data.

Each response HTTP request generated by CICS Web support includes an HTTP

header and document data.

To process this JCICS provides the following Web and TCP/IP services:

HTTP Header

You can examine the HTTP header using the HttpRequest class. With

HTTP in GET mode, if a client has filled in an HTTP form and selected the

submit button, the query string is submitted.

SSL CICS Web support provides the TcpipRequest class, which is extended by

HttpRequest to obtain more information about which client submitted the

request as well as basic information on the SSL support. If an SSL

certificate is provided, you can use the CertificateInfo class to examine it

in detail.

Documents

If a document is published to the server (HTTP POST), it is provided as a

CICS document. You can access it by calling the getDocument() method on

the HttpRequest class. See “Document services” on page 27 for more

information about processing existing documents.

 To serve the HTTP client web content resulting from a request, the server

programmer needs to create a CICS document using the Document

Services API and call the sendDocument() method.

 For more information on CICS Web support see the CICS Application

Programming Guide. For more information on the JCICS Web classes see

the JCICS Class Reference.

Unsupported CICS services

v APPC unmapped conversations

v CICS Business Transaction Services

v DUMP services

v Journal services

v Serialization services

v Storage services

v Timer services

v CICS Business Transaction Services

JCICS exception mapping

 Table 3. Java exception mapping

CICS condition Java Exception CICS condition Java Exception

ALLOCERR AllocationErrorException CBIDERR InvalidControlBlockIdException

CCSIDERR CCSIDErrorException CHANNELERR ChannelErrorException

CONTAINERERR ContainerErrorException DISABLED FileDisabledException

DSIDERR FileNotFoundException DSSTAT DestinationStatusChangeException

Chapter 6. Java programming using JCICS 37

||||

||||

Table 3. Java exception mapping (continued)

CICS condition Java Exception CICS condition Java Exception

DUPKEY DuplicateKeyException DUPREC DuplicateRecordException

END EndException ENDDATA EndOfDataException

ENDFILE EndOfFileException ENDINPT EndOfInputIndicatorException

ENQBUSY ResourceUnavailableException ENVDEFERR InvalidRetrieveOptionException

EOC EndOfChainIndicatorException EODS EndOfDataSetIndicatorException

EOF EndOfFileIndicatorException ERROR ErrorException

EXPIRED TimeExpiredException FILENOTFOUND FileNotFoundException

FUNCERR FunctionErrorException IGREQID InvalidREQIDPrefixException

IGREQCD InvalidDirectionException ILLOGIC LogicException

INBFMH InboundFMHException INVERRTERM InvalidErrorTerminalException

INVEXITREQ InvalidExitRequestException INVLDC InvalidLDCException

INVMPSZ InvalidMapSizeException INVPARTNSET InvalidPartitionSetException

INVPARTN InvalidPartitionException INVREQ InvalidRequestException

INVTSREQ InvalidTSRequestException IOERR IOErrorException

ISCINVREQ ISCInvalidRequestException ITEMERR ItemErrorException

JIDERR InvalidJournalIdException LENGERR LengthErrorException

MAPERROR MapErrorException MAPFAIL MapFailureException

NAMEERROR NameErrorException NODEIDERR InvalidNodeIdException

NOJBUFSP NoJournalBufferSpaceException NONVAL NotValidException

NOPASSBKRD NoPassbookReadException NOPASSBKWR NoPassbookWriteException

NOSPACE NoSpaceException NOSPOOL NoSpoolException

NOSTART StartFailedException NOSTG NoStorageException

NOTALLOC NotAllocatedException NOTAUTH NotAuthorisedException

NOTFND RecordNotFoundException NOTOPEN NotOpenException

OPENERR DumpOpenErrorException OVERFLOW MapPageOverflowException

PARTNFAIL PartitionFailureException PGMIDERR InvalidProgramIdException

QBUSY QueueBusyException QIDERR InvalidQueueIdException

QZERO QueueZeroException RDATT ReadAttentionException

RETPAGE ReturnedPageException ROLLEDBACK RolledBackException

RTEFAIL RouteFailedException RTESOME RoutePartiallyFailedException

SELNERR DestinationSelectionErrorException SESSBUSY SessionBusyException

SESSIONERR SessionErrorException SIGNAL InboundSignalException

SPOLBUSY SpoolBusyException SPOLERR SpoolErrorException

STRELERR STRELERRException SUPPRESSED SuppressedException

SYMBOLERR SymbolErrorException SYSBUSY SystemBusyException

SYSIDERR InvalidSystemIdException TASKIDERR InvalidTaskIdException

TCIDERR TCIDERRException TEMPLATERR TemplateErrorException

TERMERR TerminalException TERMIDERR InvalidTerminalIdException

TOKENERR TokenErrorException

TRANSIDERR InvalidTransactionIdException TSIOERR TSIOErrorException

38 Java Applications in CICS

||||

Table 3. Java exception mapping (continued)

CICS condition Java Exception CICS condition Java Exception

UNEXPIN UnexpectedInformationException USERIDERR InvalidUserIdException

WRBRK WriteBreakException WRONGSTAT WrongStatusException

Note: NonHttpDataException is thrown by getContent() if the CICS command

WEB RECEIVE indicates that the data received is a non-HTTP message (by

setting TYPE=HTTPNO).

Using JCICS

You use the classes from the JCICS library like normal Java classes. Your

applications declare a reference of the required type and a new instance of a class

is created using the new operator. You name CICS resources using the setName

method to supply the name of the underlying CICS resource.

Once created, you can manipulate objects using standard Java constructs. Methods

of the declared objects may be invoked in the usual way. Full details of the methods

supported for each class are available on-line in the supplied HTML JAVADOC files;

a summary is provided in “JCICS command reference” on page 21.

Writing the main method

For Java programs, CICS attempts to pass control to method main(CommAreaHolder)

in the class specified by the JVMCLASS option of the PROGRAM resource

definition. If this method is not found, CICS tries to invoke method main(String[]).

Creating objects

To create an object you need to:

v Declare a reference. For example:

 TSQ tsq;

v Use the new operator to create an object:

 tsq = new TSQ()

v Use the setName method to give the object a name:

 tsq.setName("JCICSTSQ");

Using objects

The following example shows how you create a TSQ object and invoke the delete

method on the temporary storage queue object you have just created, catching the

exception thrown if the queue is empty:

// Define a package name for the program

package unit_test;

// Import the JCICS package

import com.ibm.cics.server.*;

// Declare a class for a CICS application

public class JCICSTSQ {

 // The main method is called when the application runs

 public static void main(CommAreaHolder cah) {

 try {

 // Create and name a Temporary Storage queue object

Chapter 6. Java programming using JCICS 39

TSQ tsq = new TSQ();

 tsq.setName("JCICSTSQ");

 // Delete the queue if it exists

 try {

 tsq.delete();

 } catch(InvalidQueueIdException e) {

 // Absorb QIDERR

 System.out.println("QIDERR ignored!");

 }

 // Write an item to the queue

 String transaction = Task.getTask().getTransactionName();

 String message = "Transaction name is - " + transaction;

 tsq.writeItem(message.getBytes());

 } catch(Throwable t) {

 System.out.println("Unexpected Throwable: " + t.toString());

 }

 // Return from the application

 return;

 }

}

Important:

v You are strongly recommended not to use finalizers (final

methods) in CICS Java programs. For an explanation of why

finalizers are not recommended, see the IBM Developer Kit and

Runtime Environment, Java 2 Technology Edition, Version 1.4.2

Diagnostics Guide.

v You are strongly recommended not to end a CICS Java program

by issuing a System.exit() call.

When Java applications are run in CICS, the public static void

main() method is called through the use of another Java program

called the Java wrapper. The use of the wrapper allows CICS to

initialize the environment for Java applications and, more importantly,

to clean up any processes that are used during the life of the

application. Killing the JVM, even with a clean return code of 0, does

not allow this cleanup process to run, and may lead to data

inconsistency. Also, a System.exit() call makes the continuous JVM

mode unusable, because it terminates the JVM instance. The

recommended approach is to allow the program to run to the end of

the public static void main() method and the JVM to terminate

cleanly.

40 Java Applications in CICS

|
|
|
|
|

#
#

#
#
#
#
#
#
#
#
#
#
#
#

Chapter 7. Accessing data from CICS applications written in

Java

CICS applications written in Java can use a variety of methods to access data. The

methods available depend on the type of data to be accessed.

Accessing relational data

 To access relational data, a CICS application written in Java can use any of the

following methods:

v A JCICS LINK command, or the CCI Connector for CICS TS, to link to a

program that uses Structured Query Language (SQL) commands to access

the data. For information about using the CCI Connector for CICS TS, see

Chapter 23, “The CCI Connector for CICS TS,” on page 307.

v Where a suitable driver is available, use Java Data Base Connectivity

(JDBC) or Structured Query Language for Java (SQLJ) calls to access the

data directly. Suitable JDBC drivers are available for DB2. TheCICS DB2

Guide tells you how to use the JDBC and SQLJ application programming

interfaces and the DB2-supplied JDBC drivers to access data held in a DB2

database.

Note: To use JDBC or SQLJ from a Java program or enterprise bean with a

Java 2 security policy mechanism active, you must use the JDBC 2.0

driver provided by DB2 Version 7. The JDBC 1.2 driver provided by

DB2 does not support Java 2 security, and will fail with a security

exception. CICS DB2 Guide tells you how to grant permissions to the

JDBC driver in your Java 2 security policy.

v Data Access beans developed using Visual Age for Java. Data Access

beans give you a fast, easy, non-programming way of building SQL queries.

They might have a higher overhead than plain JDBC or SQLJ calls, as you

cannot tailor them so precisely for your application. However, if you are not

experienced in JDBC or SQLJ programming, Data Access beans reduce

application development time and are more convenient to use. Data Access

beans are described in “Using Data Access beans” on page 42.

v JavaBeans that use JDBC or SQLJ as the underlying access mechanism.

You can use any suitable Java integrated development environment (IDE) to

develop such JavaBeans.

v Entity beans. CICS does not support entity beans running under CICS but

does support access to entity beans running on other EJB servers. A CICS

enterprise bean could, for example, use an entity bean running on

WebSphere Application Server to access DB2 on z/OS.

Accessing DL/I data

 To access DLI data, a CICS application written in Java can use a JCICS LINK

command, or the CCI Connector for CICS TS, to link to a program that issues

EXEC DLI commands to access the data. For information about using the CCI

Connector for CICS TS, see Chapter 23, “The CCI Connector for CICS TS,” on

page 307.

Accessing VSAM data

 To access VSAM data, a CICS application written in Java can use either of the

following methods:

v Use a JCICS LINK command, or the CCI Connector for CICS TS, to link to a

program that issues CICS File Control commands to access the data. For

© Copyright IBM Corp. 1999, 2006 41

information about using the CCI Connector for CICS TS, see Chapter 23,

“The CCI Connector for CICS TS,” on page 307.

v Use the JCICS File Control classes to access VSAM directly.

Note:

1. All the above techniques can be used by both CICS enterprise beans

and CICS Java programs.

2. The same data can be accessed by CICS enterprise beans, CICS Java

programs, and (excluding CICS VSAM data) by non-CICS entity beans.

3. For all the above techniques except the use of entity beans, data

integrity is maintained by the CICS recovery manager. When entity beans

are used, you can use CICS and, for example, WebSphere Application

Server’s global transactional support, to maintain data integrity.

4. You can encapsulate JCICS commands in a JavaBean. This makes it

easier to program the enterprise beans that use JCICS to access data.

Using Data Access beans

To access relational databases, CICS applications written in Java can use JDBC or

SQLJ calls together with a suitable JDBC driver. However, if you are not

experienced in JDBC or SQLJ programming, you might find it more convenient to

use Data Access beans, which package the native JDBC calls with extra function.

Data Access beans are JavaBeans, not enterprise beans. They are a feature of

VisualAge for Java.

Three Data Access beans provide core function for accessing databases:

v Select bean

v Modify bean

v ProcedureCall bean

Additional beans provide user interfaces to invoke methods on the core beans and

to help display output from the database:

v CellSellector bean

v RowSelector bean

v ColumnSelector bean

v CellRangeSellector bean

All the beans mentioned are non-visual.

The Select, Modify, and ProcedureCall beans have properties that contain

connection aliases and SQL specifications. These properties allow you to connect to

relational databases and access data. You can also use parameterized SQL

statements with the Select, Modify, and ProcedureCall beans.

For detailed programming information about Data Access beans, see the softcopy

document Data Access, supplied with VisualAge for Java Enterprise Edition, Version

4.

42 Java Applications in CICS

Chapter 8. Using the JCICS sample programs

CICS provides sample programs that demonstrate:

v How to use the JCICS classes

v How to combine Java programs with CICS programs written in other languages

The Java source files, together with makefiles to build the sample programs, are

installed in z/OS UNIX System Services HFS.

The web sample is run using a web browser. The other sample programs are run

by entering a transaction name at a 3270 CICS screen. The following samples are

provided:

“Hello World” samples

Two simple “Hello World” programs are supplied:

v The JHE1 transaction runs a sample that uses only Java services

v The JHE2 transaction runs a sample that uses JCICS. The JCICS sample

demonstrates the use of the JCICS TerminalPrincipalFacility class.

Program Control samples

There are two Program Control samples: the first demonstrates how to use a

COMMAREA and the second how to use a channel.

COMMAREA sample

This sample demonstrates the use of the JCICS Program class to pass a

communications area (COMMAREA) to another program:

1. A transaction, JPC1, invokes a Java class that constructs a

COMMAREA and links to a C program (DFH$LCCA).

2. DFH$LCCA processes the COMMAREA, updates it, and returns.

3. The Java program checks the data in the COMMAREA and schedules a

pseudoconversational transaction to be started, passing the started

transaction the changed data in its COMMAREA.

4. The started transaction executes another Java class that reads the

COMMAREA and validates it again.

This sample also shows you how to convert ASCII characters in the Java

code to and from the equivalent EBCDIC used by the native CICS program.

Channel sample

This sample demonstrates the use of the JCICS Program class to pass a

channel to another program:

1. A transaction, JPC3, invokes a Java class that constructs a Channel

object with two Containers, and links to a C program (DFH$LCCC).

2. DFH$LCCC processes the containers, creates a new response

container, and returns.

3. The Java program checks the data in the response container and

schedules a pseudoconversational transaction to be started, passing the

Channel object to the started transaction.

4. The started transaction executes another Java class that browses the

Channel using a ContainerIterator object, and displays the name of

each container it finds.

TDQ transient data sample

This sample shows you how to use the JCICS TDQ class. It consists of a single

© Copyright IBM Corp. 1999, 2006 43

|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

transaction, JTD1, that invokes a single Java class, TDQ.ClassOne. TDQ.ClassOne

writes some data to a transient data queue, reads it, and then deletes the

queue.

TSQ temporary storage sample

This sample shows you how to use the JCICS TSQ class. It consists of a single

transaction, JTS1, that invokes a single Java class, TSQ.ClassOne, and uses an

auxiliary temporary storage queue.

 This sample also shows you how to build a class as a dynamic link library

(DLL) which can be shared with other Java programs.

Web sample

This sample shows you how to use the JCICS Web and Document classes. You

invoke this sample application from a suitable web browser. It obtains

information about the inbound client request, the HTTP headers and the Tcpip

charactistics of the transaction. This information is written to the standard output

stream System.out and inserted into a response document. Information about

the document is also obtained and written to System.out and inserted into the

response document. The response document is then sent to the client.

Building the JCICS sample programs

The Java source and makefiles are stored in the z/OS UNIX System Services HFS

during CICS installation. To build the samples in the z/OS UNIX System Services

environment, you must define three environment variables and install a group. You

can define the environment variables in the profile for z/OS UNIX System Services,

using the export command, or you can enter the export command manually when

z/OS UNIX System Services is running.

1. PATH is the z/OS UNIX System Services search path. Define the PATH

environment variable by adding:

/usr/lpp/java142/J1.4/bin

where java142/J1.4 is the install location that was set up when you installed the

IBM Software Developer Kit for z/OS, Java 2 Technology Edition, Version 1.4.2.

This is the path for the Java executables. You can use the export command to

add the path as follows:

export /usr/lpp/java142/J1.4/bin:$PATH

2. CICS_HOME is the installation directory prefix of CICS Transaction Server for

z/OS. Define the CICS_HOME environment variable as follows:

/usr/lpp/cicsts/cicsts31

where cicsts31 is defined by the USSDIR installation parameter when you

installed CICS TS (cicsts31 is the default). You can use the export command to

set the directory prefix as follows:

export CICS_HOME=/usr/lpp/cicsts/cicsts31

The $CICS_HOME/samples/dfjcics directory contains the makefiles.

The $CICS_HOME/samples/dfjcics/examples directory contains the Java source.

3. JAVA_HOME specifies the path to the IBM Software Developer Kit for z/OS,

Java 2 Technology Edition, Version 1.4.2 subdirectories. Define the

JAVA_HOME environment variable as follows:

/usr/lpp/java142/J1.4/

where java142/J1.4/ is the install location that was set up when you installed the

IBM Software Developer Kit for z/OS, Java 2 Technology Edition, Version 1.4.2

44 Java Applications in CICS

4. Install the group DFH$JVM in order to run the samples. CICS resource

definitions for all the sample programs and transactions are supplied in this

group.

5. If you want to run the Web sample program, which is invoked via a browser,

you need to follow the instructions in the CICS Internet Guide. Use the web

sample application DFH$WB1A to confirm that CICS web support is configured

correctly.

6. Follow the instructions in “Building the Java samples.”

 Related concepts

 Chapter 6, “Java programming using JCICS,” on page 17

 “The JCICS class library” on page 17

 Related tasks

 Chapter 8, “Using the JCICS sample programs,” on page 43

 “Building the Java samples”

 “Running the JCICS samples” on page 46

 Related reference

 “JCICS command reference” on page 21

Building the Java samples

To build the Java samples, you need write permission for the HFS directory in

which the samples are stored and for its subdirectories. These directories are part

of the directory structure that includes the other CICS files which have been

installed on HFS. If you do not want users to have write permission for these

directories, you should copy the samples directory and its subdirectories to another

location on HFS before building the samples.

If you use OMVS to perform this task, note that you might need to increase the size

of your TSO region when you are using the IBM Software Developer Kit for z/OS,

Java 2 Technology Edition, Version 1.4.2.

Build the samples as follows:

1. Change directory to samples/dfjcics.

2. Type make jvm to build all the samples, or alternatively:

make -f <sample_name>.mak jvm

where sample_name is the name of the specific sample you want to build.

The makefiles invoke javac and store the output files in the

$CICS_HOME/samples/dfjcics/examples/sample_name HFS directory, where

sample_name is the name of the sample program.

The following CICS C language programs are stored in SDFHSAMP during CICS

installation. They are linked by the Program Control and one of the “Hello World”

Java sample programs. You need to compile and translate these supplied C

programs, link them into a load library in the CICS DFHRPL concatenation, and

define them to CICS as described in “Defining CICS resources” on page 46.

v DFH$LCCA

v DFH$JSAM

v DFH$LCCC

Note:

Chapter 8. Using the JCICS sample programs 45

|

|

1. In the names of sample programs and files described in this book, the

dollar symbol ($) is used as a national currency symbol and is assumed

to be assigned the EBCDIC code point X’5B’. In some countries a

different currency symbol, for example the pound symbol (£), or the yen

symbol (¥), is assigned the same EBCDIC code point. In these countries,

the appropriate currency symbol should be used instead of the dollar

symbol.

2. DFH$LCCA and DFH$JSAM are standard CICS programs that could be

written in any of the CICS-supported languages. If, for example, you do

not have a C compiler, you could write COBOL versions of the supplied

programs and use them in place of the supplied C versions.

Defining CICS resources

Install the group DFH$JVM in order to run the samples. CICS resource definitions

for all the sample programs and transactions are supplied in this group.

Running the JCICS samples

You must build the JCICS samples before trying to run them. See “Building the

JCICS sample programs” on page 44.

1. Add $CICS_HOME/samples/dfjcics to the end of the Java classpath,

ibm.jvm.shareable.application.class.path, in the default JVM properties file,

dfjjvmpr.file.

2. Follow the appropriate procedure to run each sample:

v “Running the Hello World samples”

v “Running the Program Control samples” on page 47

v “Running the TDQ sample” on page 48

v “Running the TSQ sample” on page 48

v “Running the web sample” on page 48

Running the Hello World samples

There are two “Hello World” samples:

HelloWorld

This is the standard Java application that uses only Java services. It uses the

following Java class:

v HelloWorld (PROGRAM name DFJ$JHE1)

and the following C language CICS program:

v DFH$JSAM

Note: DFH$JSAM is a standard CICS program that could be written in any of

the CICS-supported languages. If, for example, you do not have a C

compiler, you could write a COBOL version of DFH$JSAM and use it in

place of the supplied C version. Alternatively, you could bypass

DFH$JSAM altogether by changing the JHE1 TRANSACTION definition

to run program DFJ$JHE1. However, if you do this bear in mind that the

Java program does not write anything to the terminal; so your only

indication that the application has run successfully is the message in the

stdout file.

Run the JHE1 CICS transaction to execute the Java standard application. You

should receive the following message from JHE1 on System.out:

Hello from a regular Java application

46 Java Applications in CICS

|
|

HelloCICSWorld

This is the JCICS application. It uses the following Java class:

v HelloCICSWorld (PROGRAM name DFJ$JHE2)

Run the JHE2 transaction to execute the JCICS application. You should receive

the following message from JHE2 on Task.out:

Hello from a Java CICS application

Running the Program Control samples

The COMMAREA sample

 This sample uses the following Java classes:

v ProgramControl.ClassOne (PROGRAM name DFJ$JPC1)

v ProgramControl.ClassTwo (PROGRAM name DFJ$JPC2)

and the following C language program:

v DFH$LCCA

Run the JPC1 CICS transaction to execute the sample. You should receive the

following messages on Task.out:

 Entering ProgramControlClassOne.main()

 About to link to C program

 Leaving ProgramControlClassOne.main()

If you now clear the screen, you should see:

Entering ProgramControlClassTwo.main()

data received correctly

Leaving ProgramControlClassTwo.main()

The channel sample

This sample uses the following Java classes:

v ProgramControl.ClassThree (PROGRAM name DFJ$JPC3)

v ProgramControl.ClassFour (PROGRAM name DFJ$JPC4)

and the following C language program:

v DFH$LCCC

Run the JPC3 CICS transaction to execute the sample. You should receive the

following messages on Task.out:

Entering ProgramControlClassThree.main()

About to link to C program

Leaving ProgramControlClassThree.main()

If you now clear the screen, you should see:

Entering ProgramControlClassFour.main()

ProgramControlClassFour invoked with Container "IntData "

ProgramControlClassFour invoked with Container "StringData "

ProgramControlClassFour invoked with Container "Response "

Leaving ProgramControlClassFour.main()

Note that the messages that list the containers may appear in a different order

from that shown above.

Note: DFH$LCCA and DFH$LCCC are standard CICS programs that could be

written in any of the CICS-supported languages. If, for example, you do not

have a C compiler, you could write COBOL versions of DFH$LCCA and

DFH$LCCC and use them in place of the supplied C versions.

Chapter 8. Using the JCICS sample programs 47

|

|
|

|

|

|

|

|
|

|
|
|

|

|
|
|
|
|

|
|

|
|
|
|

Running the TDQ sample

This sample uses the following Java class:

v TDQ.ClassOne (PROGRAM name DFJ$JTD1)

Run the JTD1 CICS transaction to execute the sample. You should receive the

following messages on Task.out:

 Entering examples.TDQ.ClassOne.main()

 Entering writeFixedData()

 Leaving writeFixedData()

 Entering writeFixedData()

 Leaving writeFixedData()

 Entering readFixedData()

 Leaving readFixedData()

 Entering readFixedDataConditional()

 Leaving readFixedDataConditional()

 Leaving examples.TDQ.ClassOne.main()

Running the TSQ sample

This sample uses the following Java classes:

v TSQ.ClassOne (PROGRAM name DFJ$JTS1)

v TSQ.Common (PROGRAM name DFJ$JTSC)

Run the JTS1 CICS transaction to execute the sample. You should receive the

following messages on Task.out:

 Entering TSQ.ClassOne.main()

 Entering TSQ_Common.writeFixedData()

 Leaving TSQ_Common.writeFixedData()

 Entering TSQ_Common.serializeObject()

 Leaving TSQ_Common.serializeObject()

 Entering TSQ_Common.updateFixedData()

 Leaving TSQ_Common.updateFixedData()

 Entering TSQ_Common.writeConditionalFixedData()

 Leaving TSQ_Common.writeConditionalFixedData()

 Entering TSQ_Common.updateConditionalFixedData()

 Leaving TSQ_Common.updateConditionalFixedData()

 Entering TSQ_Common.readFixedData()

 Leaving TSQ_Common.readFixedData()

 Entering TSQ_Common.deserializeObject()

 Leaving TSQ_Common.deserializeObject()

 Entering TSQ_Common.readFixedConditionalData()

 Number of items returned is 3

 Leaving TSQ_Common.readFixedConditionalData()

 Entering TSQ_Common.deleteQueue()

 Leaving TSQ_Common.deleteQueue()

 Leaving TSQ.ClassOne.main()

Running the web sample

This sample uses the Java class: Web.Sample1 (PROGRAM name DFJ$JWB1)

To invoke this sample, start your web browser and enter a URL that connects to

CICS Web support with the absolute path /CICS/CWBA/DFJ$JWB1

The browser should display the following response document::

Web Sample1

Inbound Client Request Information:

48 Java Applications in CICS

Method: GET

Version: HTTP/1.1

Path: /cics/cwba/jcicxsa1

Request Type: HTTPYES

Query String: null

HTTP headers:

Value for HTTP header User-Agent is ’Mozilla/4.75 €en€ (WinNT; U)’

Browse of HTTP Headers started

Name: Host Value: winmvs2d.hursley.ibm.com:27361

Name: Connection Value: Keep-Alive, TE

Name: Accept Value: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png,

 /

Name: Accept-Encoding Value: gzip

Name: Accept-Language Value: en

Name: Accept-Charset Value: iso-8859-1,*,utf-8

Name: Cookie Value: PBC_NLSP=en_US

Name: TE Value: chunked

Name: Via Value: HTTP/1.0 sp15ce18.hursley.ibm.com (IBM-PROXY-WTE-US)

Name: User-Agent Value: Mozilla/4.75 €en€ (WinNT; U)

Browse of HTTP Headers completed

TCPIP Information:

Client Name: sp15ce18.hursley.ibm.com

Server Name: winmvs2d.hursley.ibm.com

Client Address: 9.20.136.28

ClientAddrNu: 9.20.136.28

Server Address: 9.20.101.8

ServerAddrNu: 9.20.101.8

Clientauth: NO

SSL: NO

TcpipService: HTTPNSSL

PortNumber: 27361

Document Information:

Doctoken: 33 92 112 0 0 0 0 1 64 64 64 64 64 64 64 64

Docsize: 2762

Chapter 8. Using the JCICS sample programs 49

The sample also writes information messages to standard output stream System.out

and error messages to the standard output stream System.err.

Here is an example of the output written to the System.out output stream:

Sample1 started

Method: GET (3)

Version: HTTP/1.1 (8)

Path: /cics/cwba/jcicxsa1 (19)

Request Type: HTTPYES

Value for HTTP header User-Agent is ’Mozilla/4.75 en (WinNT; U)’

HTTP headers:

Name: Host (4)

Value: winmvs2d.hursley.ibm.com:27361 (30)

Name: Connection (10)

Value: Keep-Alive, TE (14)

Name: Accept (6)

Value: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */* (67)

Name: Accept-Encoding (15)

Value: gzip (4)

Name: Accept-Language (15)

Value: en (2)

Name: Accept-Charset (14)

Value: iso-8859-1,*,utf-8 (18)

Name: Cookie (6)

Value: PBC_NLSP=en_US (14)

Name: TE (2)

Value: chunked (7)

Name: Via (3)

Value: HTTP/1.0 sp15ce18.hursley.ibm.com (IBM-PROXY-WTE-US) (52)

Name: User-Agent (10)

Value: Mozilla/4.75 en (WinNT; U) (28)

Client Name: sp15ce18.hursley.ibm.com (24)

Server Name: winmvs2d.hursley.ibm.com (24)

Client Address: 9.20.136.28 (11)

ClientAddrNu: 9.20.136.28

Server Address: 9.20.101.8 (10)

ServerAddrNu: 9.20.101.8

Clientauth: NO

SSL: NO

TcpipService: HTTPNSSL

PortNumber: 27361

Doctoken: Doctoken: 33 92 112 0 0 0 0 1 64 64 64 64 64 64 64 64

Docsize: 2762

Sample1 complete

50 Java Applications in CICS

Part 3. Setting up Java support and JVMs

This Part tells you what you need to know to set up Java support and Java Virtual

Machines (JVMs) in CICS.

© Copyright IBM Corp. 1999, 2006 51

52 Java Applications in CICS

Chapter 9. Setting up Java support

The following steps tell you how to verify your Java installation and set up JVMs in

your CICS system using the supplied Java sample programs.

1. Verify that your Java components are installed correctly using the supplied

checklist in The CICS Transaction Server for z/OS Installation Guide

2. Give your CICS region permission to access the resources held in the

hierarchical file store (HFS).

In order to create JVMs, CICS requires access to directories and files that z/OS

UNIX System Services holds in HFS. “Giving CICS regions access to z/OS

UNIX System Services and HFS directories and files” tells you how to do this.

3. Run the Java sample programs to verify that Java works in your region.

“Verifying the Java installation using sample programs” on page 60 contains a

task list that describes how to set up and run the supplied sample programs.

When you have run the supplied Java sample programs, read through the

Chapter 10, “Understanding JVMs,” on page 63 section for conceptual information

on how to use JVMs in CICS. Then read the section Chapter 11, “Using JVMs,” on

page 93 to find out how to create and customize your JVM profiles and properties

files, manage the shared class cache and perform tasks such as monitoring and

debugging your Java applications.

Giving CICS regions access to z/OS UNIX System Services and HFS

directories and files

CICS requires access to z/OS UNIX System Services, and to directories and files in

the hierarchical file store (HFS), for the purposes of:

v Creating JVMs.

v Using HFS files in connection with CICS Web support.

One possible method to achieve this is as follows:

1. Choose a RACF® group that all your CICS regions can use to access z/OS

UNIX, and give a z/OS UNIX group identifier (GID) to this RACF group. Give a

z/OS UNIX user identifier (UID) to each CICS region user ID, and make sure

that each CICS region user ID connects to the RACF group that you chose.

During this process, set up a home directory on HFS for each of your CICS

regions. “Giving CICS regions a z/OS UNIX user identifier (UID) and group

identifier (GID) and setting up a home directory” on page 54 tells you how to do

all this.

2. Identify the files that each CICS region needs, and the HFS directories that

contain the files. For each directory and file, specify the group for the directory

and file as the RACF group that the CICS regions use, and give the group the

appropriate permissions. “Giving CICS regions permission to access HFS

directories and files” on page 56 tells you how to do this. You will need to repeat

this task when you tell a CICS region to use any other files or HFS directories.

If you need more general information about RACF facilities for controlling access to

z/OS UNIX System Services, see the z/OS Security Server RACF Security

Administrator’s Guide, SA22-7683. If you need more general information about the

UNIX facilities that you can use to control access to HFS files and directories, see

z/OS UNIX System Services Planning, GA22-7800.

© Copyright IBM Corp. 1999, 2006 53

|

|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|

|

|
|

|

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

Giving CICS regions a z/OS UNIX user identifier (UID) and group

identifier (GID) and setting up a home directory

When a CICS region requests a z/OS UNIX function for the first time, RACF:

v Verifies that the user (the CICS region user ID) is defined as a z/OS UNIX user.

v Verifies that the user’s current connect group is defined as a z/OS UNIX group.

v Initializes the control blocks needed for subsequent security checks.

You need to ensure that each CICS region meets these security requirements, by

assigning a z/OS UNIX user identifier (UID) to the CICS region user ID, and

assigning a z/OS UNIX group identifier (GID) to a RACF group to which the CICS

region user ID connects. The identifiers will also be needed to give each CICS

region permission to access the HFS directories and files that it needs. During this

process, you also need to set up a home directory for each CICS region. This home

directory can then be used, if you wish, as the work directory for Java-related

activities and for output from JVMs, or as the location for HFS files used by CICS

Web support.

The UID and GID are numbers that can be in the range 0 to 16 777 216. (0 is a

superuser ID.) Give some thought to naming conventions, and to any existing UIDs

and GIDs in your z/OS UNIX system. z/OS UNIX System Services Planning,

GA22-7800, explains how to manage the UIDs and GIDs for your z/OS UNIX

system.

To assign a z/OS UNIX UID and GID for your CICS regions and set up a home

directory:

1. Choose a RACF group that can be used by all your CICS regions. For example,

you could use a RACF group that is defined as the default group of your CICS

region user IDs, or you could set up a RACF group to be used only for access

to JVM-related directories and files or CICS Web support directories and files. If

you use this RACF group for giving file access permissions, following the

procedure described in “Giving CICS regions permission to access HFS

directories and files” on page 56, the RACF group’s z/OS UNIX group identifier

(GID) will be associated with the HFS directories and files. This means that the

owner of these directories and files, and anyone who is not the owner but needs

to carry out operations with these files, will need to have this group as his or her

group or one of their supplementary groups. “RACF group profiles” in the CICS

RACF Security Guide explains how RACF groups work.

2. Choose a suitable z/OS UNIX group identifier (GID) for the RACF group, and

assign the GID to the RACF group. To assign a GID, specify the GID value in

the OMVS segment of the RACF group profile. For example, if the RACF group

is CICSTSAB, and the GID you want to assign is 9, use the command:

ALTGROUP CICSTSAB OMVS(GID(9))

3. Choose a suitable z/OS UNIX user identifier (UID) for each CICS region. Assign

the UID to each of your CICS region user IDs. (“Specifying the CICS region

userid” in the CICS RACF Security Guide explains how the region user ID under

which CICS executes is specified when CICS is run as a started task, as a

started job, or as a job.) To assign UIDs, specify the UID value in the OMVS

segment of the RACF user profile for each CICS region user ID. Also specify

the name of a home directory for each CICS region using the HOME option.

The directory name should be in the format /u/CICS region userid. “RACF

user profiles” in the CICS RACF Security Guide tells you how to update a RACF

54 Java Applications in CICS

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

user profile using the ALTUSER command. For example, if the CICS region

user ID is CICSHT##, and the UID you want to assign is 2001, use the

command:

ALTUSER CICSHT## OMVS(UID(2001) HOME(’/u/cicsht##’))

If you want to know about the other information that can be specified in an

OMVS segment parameter in a user profile besides the UID and home directory,

see the z/OS Security Server RACF Command Language Reference,

SA22-7687.

Note: It is possible to assign the same UID to more than one CICS region user

ID. If all your CICS regions need to use the same HFS files (for example,

the supplied sample files for JVMs), you could give all the CICS regions

the same UID, and then you could assign permissions to that UID, rather

than to the GID. However, bear in mind that:

a. The sharing of UIDs allows each CICS region to access all of the

z/OS UNIX resources that the other CICS regions with that shared

user ID can access, and this might not be appropriate in your system.

b. The sharing of UIDs is not normally recommended in a z/OS UNIX

system.

c. If you do choose to share UIDs, note that the z/OS UNIX System

Services parameter MAXPROCUSER limits the maximum number of

processes that a single user (that is, with the same UID) can have

concurrently active. z/OS UNIX System Services Planning,

GA22-7800, has more information about this parameter.

4. Set up each of the directories that you have specified as a home directory for

one of your CICS regions. To do this:

a. If you are not using an automount facility, use the mkdir command to create

the HFS directories. For example, issuing the UNIX command

mkdir /u/cicsht##

creates the HFS directory /u/cicsht##. (If you are using the TSO command,

the directory name must be enclosed in single quotes.)

b. Whether or not you are using an automount facility, allocate an HFS data

set for each directory. z/OS UNIX System Services Planning, GA22-7800,

tells you how to do this.

c. If you are not using an automount facility, mount the data set that you have

allocated. Again, z/OS UNIX System Services Planning, GA22-7800, tells

you how to do this.

Note that the HFS data set that you allocate for a CICS region’s home directory

has a finite size, and if a particular CICS region is using the home directory

extensively, you might need to increase the amount of space that the region has

available.

5. Make sure that each of your CICS region user IDs connects to the RACF group

to which you assigned a z/OS UNIX group identifier (GID). If your CICS region

user IDs need to connect to more than one RACF group, RACF list of groups

must be active in your system.

To check the UID and GID details for a user, use the id command in the UNIX

environment. For example, issuing the id command for our example CICS region

user ID CICSHT## would give the following result:

uid=2001(CICSHT##) gid=9(CICSTSAB)

Chapter 9. Setting up Java support 55

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|

|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

Now that each CICS region user ID has a UID and is connected to a group with a

GID, it can use z/OS UNIX functions and access z/OS UNIX files. Next, identify the

files that each CICS region needs, and the HFS directories that contain the files,

and use the group name or GID to give the CICS region permission to access

these directories and files. “Giving CICS regions permission to access HFS

directories and files” tells you how to do this.

Giving CICS regions permission to access HFS directories and files

Because your CICS regions have a z/OS UNIX user identifier (UID), and their

connect group (the RACF group) has a z/OS UNIX group identifier (GID), z/OS

UNIX System Services treats each CICS region as a UNIX user. There are four

ways to grant a user permissions to access HFS directories and files:

v Set the “other” permissions for the directory or file so that every user has access.

This would give access to all the CICS regions, but it would also give access to

every other HFS user, so this option might not be suitable for use in your

production environment.

v Make the user the owner of the directory or file, with the appropriate owner

permissions. This option can only be used for one user (so one CICS region) at

a time. This is a good solution to use for the home directory for each CICS

region, but it is not such a good solution to use for directories and files that are

needed by more than one CICS region (for JVMs, this would include the

CICS-supplied JAR files and the IBM persistent reusable JVM code). As

mentioned in “Giving CICS regions a z/OS UNIX user identifier (UID) and group

identifier (GID) and setting up a home directory” on page 54, it is possible to

assign the same UID to all your CICS regions, and then you can make that UID

the owner of the directories and files. However, bear in mind the points noted in

that section about the disadvantages associated with the sharing of UIDs.

v Associate the directory or file with a RACF group that has been assigned a z/OS

UNIX group identifier (GID), give the RACF group the appropriate group

permissions, and connect the users (the CICS regions) to this RACF group. This

might often be the safest option for a production environment, so this topic

explains how to do it. If this method is not the most suitable for your

environment, then you might prefer to give CICS access to the files using owner

permissions or “other” permissions, or perhaps a combination of the three types

of permission, depending on the level of security that you require for each type of

directory or file.

v With z/OS Version 1 Release 3 or later, you can use access control lists (ACLs)

to control access to files and directories by individual UIDs and GIDs. With ACLs,

you can give more than one group permissions for directories or files on HFS, so

you do not need to ensure that all your CICS regions connect to the same RACF

group. ACLs are created and checked by RACF, so if you are using a different

security product, check its documentation to see if ACLs are supported. For more

information about using ACLs, see z/OS UNIX System Services Planning,

GA22–7800.

To check the permissions for files and directories in a path, go to the directory

where you want to start, and issue the following UNIX command:

ls -la

For example, if this command is issued in the z/OS UNIX System Services shell

environment when the current directory is the home directory of CICSHT##, a list

such as the following is displayed:

56 Java Applications in CICS

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|

|
|
|

/u/cicsht##:>ls -la

total 256

drwxr-xr-x 2 CICSHT## CICSTS31 8192 Mar 15 2004 .

drwx------ 4 CICSHT## CICSTS31 8192 Jul 4 16:14 ..

-rw------- 1 CICSHT## CICSTS31 2976 Dec 5 2004 Snap0001.trc

-rw-r--r-- 1 CICSHT## CICSTS31 1626 Jul 16 11:15 dfhjvmerr

-rw-r--r-- 1 CICSHT## CICSTS31 0 Mar 15 2004 dfhjvmin

-rw-r--r-- 1 CICSHT## CICSTS31 458 Oct 9 14:28 dfhjvmout

-rw-r--r-- 1 CICSHT## CICSTS31 64175 May 11 18:00 event.log

/u/cicsht##:>

Permissions are indicated, in three sets, by the letters r, w, x and -. These

represent READ, WRITE, EXECUTE, and NONE respectively, and are shown in the

left-hand column of the display, starting with the second character. The first set are

the owner permissions, the second the group permissions, and the third “other”

permissions. In all these examples, the owner has read and write permissions, but

the group and all others have only read.

Note: The name of the file owner (CICSHT## in the example) is displayed in the

list, but owner permissions are actually associated with the UID. If other

CICS region user IDs have been assigned the same UID, they have the

same permissions as CICSHT##. Remember that this practice is not

normally recommended in a z/OS UNIX system.

You need to give each CICS region permission to access the HFS directories and

files that it uses. To give your CICS regions permissions, you must be either a

superuser on z/OS UNIX, or the owner of the directories and files. For directories

and files supplied by CICS or by the IBM JVM, the owner is initially set as the UID

of the system programmer who installs the product. Also, if you are giving CICS

access using group permissions, the owner of the directories and files must be

connected to the RACF group that you chose for all your CICS regions to access

z/OS UNIX. The owner could have that RACF group as their default group

(DLFTGRP) or be connected to it as one of their supplementary groups.

When you need to change the permissions for directories and files, use the UNIX

command chmod. z/OS UNIX System Services Command Reference, SA22-7802,

and z/OS UNIX System Services User’s Guide, SA22-7801, has information about

using this command. The following examples should help:

chmod -R g=rwx directory

 sets the group permissions for the named directory and its

 subdirectories and files to read, write and execute

 (-R applies permissions Recursively to all

 subdirectories and files)

chmod g+rx filename

 sets the group permissions for the named file to read and execute

chmod g-w filename filename

 sets the group write permission off for the two named files

u is for user (owner) permissions, g is for group permissions,

o is for other permissions

HFS permissions for CICS Web support

When you use HFS files to provide static responses to requests from Web clients, a

CICS region which receives those requests and provides the responses needs read

access to the HFS files and to the directories containing them.

If you have stored all the files relevant to each CICS region in a directory structure

below the home directory for the CICS region, you can make the CICS region the

Chapter 9. Setting up Java support 57

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

#

#
#
#

#
#

owner of each directory and file (with the appropriate owner permissions). If some

HFS files are used by more than one CICS region, you will need to use one of the

other solutions described in this topic, such as group permissions or access control

lists (ACLs). In the procedure described below for Java support, the first step gives

examples of how to set up group permissions for HFS directories and files used by

multiple CICS regions. The use of “other” permissions, which would give access to

every HFS user, is not recommended for CICS Web support in a production

environment.

HFS permissions for Java support

When you are setting up Java support in a CICS region, the required directories

and files fall into three categories:

1. The directories and files that every CICS region needs to create JVMs.

2. The working directory that you have specified for input, output and messages

from the JVMs in each individual CICS region. (This might be the home

directory for the CICS region.)

3. Any other directories and files that you have told a CICS region to use in the

process of creating JVMs, or in support of CORBA applications and enterprise

beans. This includes any directories and files that you have changed from their

original locations, for example, JVM profiles that you have moved to a different

directory. It also includes any directories and files that you have added to be

used with JVMs or for CORBA applications and enterprise beans, for example,

your own application classes, or classes that you have added to the trusted

middleware class path.

If you want to give CICS access to the files required for Java support using group

permissions, you can use the following procedure to grant the appropriate

permissions. If you want to give CICS access using another type of permission, or a

combination of the different permissions depending on the level of security that you

require for each type of directory or file, then you can use the following procedure,

but substitute an alternative type of permission (“other” or owner) as appropriate for

the different types of directory or file.

1. The directories and files that every CICS region needs to create JVMs are

set up when you install CICS, and when you install the IBM Software Developer

Kit for z/OS, Java 2 Technology Edition, Version 1.4.2. These directories and

files are:

v Most of the files in the /usr/lpp/cicsts/cicsts31 directory and its

subdirectories. The cicsts31 directory name is a user-defined value that you

chose for the CICS_DIRECTORY variable used by the DFHIJVMJ job during

CICS installation; cicsts31 is the default. The files in this directory and its

subdirectories include the supplied sample JVM profiles and JVM properties

files, the CICS-supplied JAR files such as dfjcics.jar and dfjcsi.jar, and

some of the files that CICS includes on the trusted middleware class path.

v Some of the files in the /usr/lpp/java142/J1.4/bin and

/usr/lpp/java142/J1.4/bin/classic directories that contain the IBM

persistent reusable JVM code. The java142/J1.4 directory names are the

default values when you install the IBM Software Developer Kit for z/OS,

Java 2 Technology Edition, Version 1.4.2.

Each CICS region requires read and execute access to these directories and

files. To grant this access:

a. Display the directories and files as described earlier in this topic, and check

that the group permissions for the directories and files give the correct

58 Java Applications in CICS

#
#
#
#
#
#
#
#

|

|
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

access to the group (the second set of permissions). If you need to change

the permissions, use the UNIX command chmod, as described earlier in this

topic.

b. Assign to the RACF group that all your CICS regions can use, the group

permissions for the /usr/lpp/cicsts/cicsts31 directory and its

subdirectories, and for the files in them. To do this, issue the UNIX

command

chgrp -R GID /usr/lpp/cicsts/cicsts31

where GID is the numeric z/OS UNIX group identifier (GID) which you

assigned to the RACF group that all your CICS regions can use. The -R in

the command means that the group is changed for not only the cicsts31

directory, but also all the subdirectories, and all the files in the directory and

subdirectories. Because your CICS region user IDs are connected to this

group, the CICS regions now have read and execute permission for all

these directories and files.

c. Assign to the same RACF group, the group permissions for the

/usr/lpp/java142/J1.4/bin directory and its subdirectories, and the files in

them. To do this, issue the UNIX command

chgrp –R GID /usr/lpp/java142/J1.4/bin

as you did above for the /usr/lpp/cicsts/cicsts31 directory. Your CICS

regions now have read and execute permission for all these directories and

files.

2. The working directories that you have specified for input, output and

messages from the JVMs in each individual CICS region are specified on

the WORK_DIR option in the JVM profiles used in the CICS region, and also in

any Java class that you have specified on the USEROUTPUTCLASS option to

redirect stdout and stderr output from JVMs. The default working directories are

as follows:

v For the WORK_DIR option, the default working directory as specified in the

supplied sample JVM profiles is the home directory of the CICS region user

ID (that is, the directory /u/CICS region userid), which you should have

created while following the procedure described in “Giving CICS regions a

z/OS UNIX user identifier (UID) and group identifier (GID) and setting up a

home directory” on page 54. If the CICS region user ID does not have this

home directory, /tmp is used by default as the working directory.

v For the USEROUTPUTCLASS option, if you are using the CICS-supplied

sample class com.ibm.cics.server.SJMergedStream, the default working

directory is the directory specified on the WORK_DIR option in the JVM

profile. If you are using the alternative CICS-supplied sample class

com.ibm.cics.server.SJTaskStream, the default working directories are

/work_dir/applid/stdout and /work_dir/applid/stderr, where work_dir is

the directory specified on the WORK_DIR option in the JVM profile, and

applid is the applid of the CICS region. The USEROUTPUTCLASS option is

not active in the supplied sample JVM profiles.

If you have specified a different directory on the WORK_DIR option, or used the

USEROUTPUTCLASS option to specify a Java class, in any of the JVM profiles

in your CICS region, find out the names of the HFS directories that are used by

the WORK_DIR option or the Java class.

Each CICS region requires read, write and execute access to the HFS

directories that you have identified as being used as a working directory or for

output from JVMs in that region. If a directory is unique to a CICS region (for

example, if it is based on a unique home directory that you created for the

Chapter 9. Setting up Java support 59

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

region, or if it was created using the special symbol &applid; and so includes

the CICS region’s unique applid), then you can make the CICS region’s UID the

owner of the directory and its subdirectories, and use the owner permissions to

give the appropriate permissions to the CICS region. However, if more than one

CICS region uses a particular directory, then you need to use group permissions

so that all the CICS regions have access to the directory. For each directory

that is used by more than one CICS region, follow the same procedure that you

carried out for the directories and files that every CICS region needs to create

JVMs, ensuring that you give the group write access (w) as well as read and

execute access.

3. Other directories and files that you have told a CICS region to use in the

process of creating JVMs, or in support of CORBA applications and

enterprise beans need the correct permissions applied too. If you are starting

to set up JVMs in a CICS region for the first time, you probably do not have any

other directories and files at this stage. You will have other directories and files

if:

v You add directory paths to the CLASSPATH option in a JVM profile or to the

ibm.jvm.shareable.application.class.path system property in a JVM

properties file, so that the JVM will search those directories for your own

application classes.

v You add directory paths to the TMPREFIX or TMSUFFIX options on a JVM

profile, so that they will be part of the trusted middleware class path.

v You add directory paths to the LIBPATH, which contains the directories that

are searched for native C dynamic link library (DLL) files that are used by the

JVM, including those required to run the JVM and additional native libraries

loaded by trusted code.

v You create your own JVM profiles or JVM properties files, or move the

supplied JVM profiles or JVM properties files to a directory that is not under

the /usr/lpp/cicsts/cicsts31 directory. (You can use the EXEC CICS

INQUIRE JVMPROFILE command to find the HFS directory that contains a

JVM profile, provided that the JVM profile has been used during the lifetime

of the CICS region. The HFS directory for a JVM properties file is specified

by the JVMPROPS option on the JVM profiles that reference it.)

v You move any of the files that every CICS region needs to create JVMs, that

is, the files in the /usr/lpp/cicsts/cicsts31 directory, or the

/usr/lpp/java142/J1.4/bin and /usr/lpp/java142/J1.4/bin/classic

directories.

v You set up a shelf directory or a deployed JAR file directory (also known as a

pickup directory) to support CORBA applications or enterprise beans.

Each CICS region requires read and execute access to all the HFS directories

and files that you have identified in this category. If you have already set up any

of these items, make sure that you have set the correct permissions for the

directories and files involved, and given your CICS regions permission to access

them. When you set up these items later on, return to this topic and for each

directory or file, follow the same procedure that you carried out for the

directories and files that every CICS region needs to create JVMs.

Verifying the Java installation using sample programs

This topic describes how to run the ″Hello World″ and ″Hello CICS World″ sample

programs to verify that Java has been successfully installed and set up in a CICS

region.

60 Java Applications in CICS

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|

Before you begin to run the Java sample programs, verify that the Java supplied

components are correctly installed in your CICS region. Use the checklist provided

in The CICS Transaction Server for z/OS Installation Guide.

To verify your Java installation, follow the steps below to set up and run the

supplied sample programs.

1. Build the sample programs using the following steps:

a. Define the environment variables PATH, CICS_HOME and JAVA_HOME.

Instructions on what to define for each variable are described in “Building

the JCICS sample programs” on page 44.

b. Install the group DFH$JVM in order to run the samples.

c. Build the Java samples, as described in “Building the Java samples” on

page 45.

2. Add $CICS_HOME/samples/dfjcics to the end of the Java classpath,

ibm.jvm.shareable.application.class.path, in the default JVM properties file,

dfjjvmpr.file.

3. Run the Hello World samples using the steps outlined in “Running the Hello

World samples” on page 46

If you have any problems running the Java sample programs, do the following:

Chapter 9. Setting up Java support 61

|
|
|

|
|

|

|
|
|

|

|
|

|
|
|

|
|

|

62 Java Applications in CICS

Chapter 10. Understanding JVMs

CICS provides the support you need to run a Java program in a z/OS Java Virtual

Machine (JVM) executing under the control of a CICS region. CICS support for

JVMs allows you to run CICS application programs written in the Java language

and compiled to bytecode by any standard Java compiler. You can find information

about Java on the z/OS platform at http://www.ibm.com/servers/eserver/zseries/
software/java/

CICS TS 3.1 supports the JVM provided by the IBM Software Developer Kit for

z/OS, Java 2 Technology Edition, Version 1.4.2 .

Note: There are two versions of the IBM Software Developer Kit for z/OS, Java 2

Technology Edition Version 1.4, a 31-bit and a 64-bit version. CICS TS 3.1

supports only the 31-bit version, which must be at the 1.4.2 level.
This JVM features persistent reusable JVM technology and includes several

optimizations designed for the execution of CICS transactions. These optimizations

are:

v The ability for JVMs to share a cache of commonly-used class files that are

already loaded, enabling faster JVM startup and reducing the cost of class

loading. When a new JVM that shares the class cache is initialized, it can use

these pre-loaded classes instead of reading them from the file system. Also, if

the JVM performs just-in-time (JIT) compilation for any of the classes, it can write

the results back to the shared class cache, and other JVMs can then use the

compiled classes. All the heap data (objects and static variables) are owned by

the individual JVMs; this maintains the isolation between the applications being

processed in the JVMs.

v The serial reuse of a JVM for multiple Java programs, avoiding most of the

initialization costs. Serial reuse might or might not involve resetting the state of

the JVM between uses.

v An optimized garbage-collection scheme, enabled by the clean separation of

short-lived application objects from long-lived classes, objects, and native state

(that is, non-Java or C language state), which are reset.

“The structure of a JVM” on page 64 tells you what you need to know about the

structure of a JVM in order to use JVMs with CICS.

CICS performs the following management tasks relating to JVMs:

v CICS creates JVMs. This process is described in “How CICS creates JVMs” on

page 71.

v CICS manages the pool of JVMs that it has created. This process is described in

“How CICS manages JVMs in the JVM pool” on page 75.

v CICS allocates JVMs to applications that need to run a Java program. This

process is described in “How CICS allocates JVMs to applications” on page 79.

v Most JVMs can be reused once an application has finished using them to run a

Java program. There are three levels of reusability. JVMs might be reset and

reused (resettable JVMs), or they might be reused without being reset

(continuous JVMs), or they might be thrown away after use (single-use JVMs).

“How JVMs are reused” on page 85 explains the difference between these types

of JVM.

© Copyright IBM Corp. 1999, 2006 63

|
|
|

v CICS creates a shared class cache so that some of the JVMs in the CICS region

can share commonly-used class files and compiled classes. CICS also provides

an interface so that you can manage the shared class cache. “The shared class

cache” on page 89 describes this.

Chapter 9, “Setting up Java support,” on page 53 tells you how to set up and use

JVMs in your CICS system.

Java programs that ran under CICS Transaction Server for z/OS, Version 2 Release

2 or CICS Transaction Server for z/OS, Version 2 Release 3 can also run under

CICS Transaction Server for z/OS, Version 3 Release 1. CICS Transaction Server

for z/OS, Version 2 supported the JVM created by the IBM Developer Kit for

OS/390 Java 2 Technology Edition Version 1.3.1s, which also featured the

persistent reusable JVM technology. However, the older type of JVM that was

introduced in CICS Transaction Server for OS/390, Version 1 Release 3, which was

not reusable, is no longer supported. Any Java programs that ran under CICS

Transaction Server for OS/390, Version 1 Release 3 must be migrated to Java 2 to

run under the JVM provided by the IBM Software Developer Kit for z/OS, Java 2

Technology Edition, Version 1.4.2. “Removal of support for CICS Transaction Server

for OS/390, Version 1 Release 3 JVMs” on page 92 has more information about

this.

The structure of a JVM

This topic summarizes what you need to know about the structure of a JVM in order

to use JVMs with CICS. You can find more detailed information about the structure

of a JVM in the document Persistent Reusable Java Virtual Machine User’s Guide,

SC34-6201.

This topic covers:

v “Classes in a JVM”

v “Where a JVM is constructed” on page 68

v “Storage heaps in a JVM” on page 69

v “JVMs and the z/OS shared library region” on page 68

Classes in a JVM

There are three types of class in a JVM:

1. The z/OS JVM code, which provides the base services in the JVM. These

classes are system classes and standard extension classes, which are known

collectively as primordial classes. They have a special status that allows the

objects created from them to be associated with middleware or the application,

depending on the kind of class that invokes their construction.

2. The middleware, which provides services that access resources. This includes

the JCICS interfaces classes, JDBC, JNDI, and so on. These classes are

known as middleware classes. Middleware is trusted by the JVM to manage its

own state between one use of a JVM and the next, and it can therefore operate

without restrictions, and is trusted to make changes to the JVM environment,

even if the JVM is resettable. This enables optimizations through the caching of

state (classes and native libraries, for example) to be used by multiple

applications. However, middleware is responsible for resetting itself correctly at

the end of a transaction and, if necessary, for reinitializing at the beginning of a

new transaction, in order to isolate different applications from each other.

Persistent Reusable Java Virtual Machine User’s Guide, SC34-6201 explains

how middleware should be written.

64 Java Applications in CICS

|
|
|
|
|
|
|
|
|
|
|
|
|

3. The classes for the user application. These classes are known as application

classes.

v Application classes can be shareable, meaning that when they have been

loaded, they are kept across JVM reuses and resets, so that they can be

used by other transactions. If the JVM is reset, they are re-initialized.

v Alternatively, application classes can be nonshareable, if they are placed on

the standard class path. In a resettable JVM, nonshareable application

classes are discarded when the JVM is reset, and must be reloaded each

time they are required. In a continuous JVM, however, they are not

discarded, and are kept intact for subsequent reuses of the JVM.

v When a JVM is defined as resettable, if application classes perform actions

that change the JVM environment, these actions are noted and the JVM is

destroyed after the application has finished using it. In a continuous JVM, this

restriction does not apply, and application classes are permitted to make

changes to the JVM environment. (“How JVMs are reused” on page 85

explains more about resettable and continuous JVMs.)

The classes in a JVM, and the objects that they create, are placed in different

storage heaps in the JVM according to their expected lifetime. For example,

nonshareable application classes (on the standard class path) are placed in the

transient heap in a resettable JVM, because this heap is deleted if the JVM is reset

between uses. “Storage heaps in a JVM” on page 69 explains how the classes and

objects are arranged in storage heaps.

The JVM can identify the correct type for each class because of the class path on

which the class is included. The class path determines how the class is loaded by

the JVM, where it is stored, and how it is treated. So, for example, any class that is

included on the shareable application class path is loaded by the shareable

application class loader, stored in the application-class system heap, kept across

JVM reuses and resets, and re-initialized if the JVM is reset. Persistent Reusable

Java Virtual Machine User’s Guide, SC34-6201 explains more about the process of

loading classes.

The class paths for a JVM are defined by options in the JVM profile, and in the

JVM properties file that the JVM profile references. (“How CICS creates JVMs” on

page 71 explains JVM profiles and JVM properties files.) Generally speaking, when

you are preparing Java applications that will run in a JVM, you need to ensure that

all the middleware and application classes required by the application are included

on the class paths defined by the JVM profile and JVM properties file that are

requested by the application. You also need to ensure that any native C dynamic

link library (DLL) files that are required for the application (which have the extension

.so in z/OS UNIX) are included on the library path in the JVM profile. You do not

need to include the system classes and standard extension classes (the primordial

classes) on a class path, because they are already included on the boot class path

in the JVM.

Note that although for convenience we refer to “including a class on a class path”,

the name of the class itself (including the name of the package, if the program has

been built as a package) is not actually specified in the JVM profile or JVM

properties file. The options in the JVM profile or JVM properties file specify the path

to the class—that is, the full path of the HFS directory in which a class loader will

be able to find the class or the package containing the class. Where classes or

packages have been placed in JAR files (with the extension .jar), the name of the

JAR file is included on the class path as if it were the name of a directory. “Adding

application classes to the class paths for a JVM” on page 128 explains more about

this.

Chapter 10. Understanding JVMs 65

In the JVM provided by the IBM Software Developer Kit for z/OS, Java 2

Technology Edition, Version 1.4.2, which features the persistent reusable JVM

technology, the four class paths on which classes or native libraries can be included

are as follows:

1. The library path is for native C dynamic link library (DLL) files that are used by

the JVM (which have the extension .so in z/OS UNIX), including those required

to run the JVM and additional native libraries loaded by trusted code. This might

include the DLL files needed to use the DB2 JDBC drivers, or any native code

associated with a class that you are using to redirect JVM output (named on the

USEROUTPUTCLASS option in the JVM profile).

The library path is defined by the LIBPATH option in the JVM profile. “Adding

application classes to the class paths for a JVM” on page 128 tells you how to

include items on the library path. Note that if the JVM is to use the shared class

cache (see “The shared class cache” on page 89), you will need to include the

DLL files in the JVM profile for the master JVM that initializes the shared class

cache, rather than in the JVM profile for the JVM where the application will run.

The master and worker JVMs use the same library path to ensure that they are

using the same versions of these files. However, note that the files are not

loaded into the shared class cache. Unless they are shared through another

z/OS facility (such as the shared library region), a copy is loaded into each

worker JVM.

2. The trusted middleware class path is for middleware classes, that is, classes

that are trusted by the JVM to manage their own state across a JVM-reset.

Trusted middleware classes are permitted to change the JVM environment even

if the JVM is resettable, so for this reason you should not normally place your

own application classes on the trusted middleware class path. However, you

might need to add classes for middleware supplied by IBM or by another

vendor, which are not included in the standard JVM setup for CICS. For

example, to use the DB2-supplied JDBC drivers with Java programs and

enterprise beans, you need to add a DB2-supplied zip file to the trusted

middleware class path.

In CICS, the trusted middleware class path is built automatically from the paths

that you specify using the CICS_DIRECTORY, TMPREFIX, and TMSUFFIX

options in the JVM profile. “Options in JVM profiles” in the CICS System

Definition Guide has more details about these options. There is a corresponding

system property, ibm.jvm.trusted.middleware.class.path, in the JVM

properties file, but you cannot use this system property for CICS. “Adding

application classes to the class paths for a JVM” on page 128 tells you how to

include classes on the trusted middleware class path. Note that if the JVM is to

use the shared class cache (see “The shared class cache” on page 89), you will

need to include the middleware classes in the JVM profile for the master JVM

that initializes the shared class cache, rather than in the JVM profile for the JVM

where the application will run.

3. The shareable application class path is for shareable application classes, that

is, application classes that you want to be cached, either in the JVM or in the

shared class cache. Defining the JVM as a resettable JVM subjects these

classes to restrictions which mean that they cannot affect or pass state to

subsequent transactions that use the JVM. When you add a class to this class

path:

v If the JVM uses the shared class cache (see “The shared class cache” on

page 89), the classes are obtained from the shared class cache, rather than

being loaded by each individual JVM.

v If the JVM does not use the shared class cache but is resettable, the classes

are cached in the JVM, and are reinitialized when the JVM is reset.

66 Java Applications in CICS

v If the JVM does not use the shared class cache and is a continuous JVM, the

classes are cached in the JVM, and are kept across reuses, but are not

reinitialized.

Adding application classes to this class path, rather than to the standard class

path, produces the best performance, and it should be your normal choice for

loading application classes in a production environment.

The shareable application class path is defined by a system property,

ibm.jvm.shareable.application.class.path, in the JVM properties file.“Adding

application classes to the class paths for a JVM” on page 128 tells you how to

include classes on the shareable application class path. Note that if the JVM is

to use the shared class cache, you will need to include the shareable

application classes in the JVM properties file for the master JVM that initializes

the shared class cache, rather than in the JVM properties file for the JVM where

the application will run.

4. The standard class path is for nonshareable application classes, that is,

application classes that you do not want to be shared by other JVMs or across

JVM resets. Like shareable application classes, defining the JVM as a

resettable JVM subjects these classes to restrictions which mean that they

cannot affect or pass state to subsequent transactions that use the JVM. When

you add a class to this class path:

v If the JVM uses the shared class cache (see “The shared class cache” on

page 89), the standard class path is the only class path that is taken from the

JVM profile for the JVM itself, rather than from the JVM profile for the master

JVM that initialises the shared class cache. The classes are loaded by the

individual JVM, and are not stored in the shared class cache.

v If the JVM is resettable, classes on this class path are discarded when the

JVM is reset, and reloaded from HFS files each time the JVM is reused.

v If the JVM is a continuous JVM, nonshareable application classes are kept

intact from one JVM reuse to the next.

You should not normally place application classes on the standard class path

without a good reason for doing so, as it causes a degradation in performance

in a resettable JVM, and for worker JVMs (both resettable and continuous) it

uses more storage than having a single copy of the classes in the master JVM.

Some possible reasons for choosing this class path, instead of the shareable

application class path, are:

v In a non-production environment, you might use this class path during

application development if your JVMs are resettable, because it means you

do not have to phase out the JVM pool in order to update class definitions. (If

your JVMs are continuous, you still need to phase out the JVM pool.)

v If a particular class is used infrequently, you might use this class path if you

prefer to incur the performance cost of reloading the class each time it is

required, rather than the storage cost of keeping the class in the JVM or in

the shared class cache.

The standard class path is defined by the CLASSPATH option in the JVM

profile. There is a corresponding system property, java.class.path, in the JVM

properties file, but you cannot use this system property for CICS. “Adding

application classes to the class paths for a JVM” on page 128 tells you how to

include classes on the standard class path.

Enterprise beans are a special case. You do not need to add the deployed JAR

files (DJARs) for your enterprise beans to the class path. CICS manages the

loading of the classes included in these files by means of the DJAR definitions.

However, if your enterprise beans use any classes, such as classes for utilities, that

Chapter 10. Understanding JVMs 67

are not included in the deployed JAR file, you do need to include these classes on

the shareable application class path that will be used by the JVM for the request

processor program. “Adding application classes to the class paths for a JVM” on

page 128 tells you how to do this.

Compiled classes

Java programs can execute in a JVM running on any supported platform through

the ability of the JVM to interpret Java bytecode. You create Java bytecode class

files using a Java compiler, such as VisualAge for Java or WebSphere Studio

Application Developer, and these classes can be executed by a JVM without the

need for any further translation.

This mode of executing Java classes is by interpretation, but a more efficient

method in terms of performance is to convert the Java bytecode into z/OS machine

code, like load modules. The JIT-compile function of the JVM provides this service.

It produces JIT-compiled versions of frequently used Java methods, normally at

variable times during the usage of the methods. The JIT-compiling process incurs

additional CPU time and uses extra Language Environment storage, but provides

more efficient executable code. The CPU cost of the Java applications reduces after

the JIT-compiled code is produced.

Where a JVM is constructed

Each JVM that CICS creates is constructed in its own Language Environment

enclave, to ensure isolation between JVMs running in parallel. The Language

Environment enclave is created using the Language Environment preinitialization

module, CEEPIPI, and the JVM runs as a z/OS UNIX process. The JVM therefore

uses MVS™ Language Environment services rather than CICS Language

Environment services. The storage used for a JVM is MVS storage, obtained by

calls to MVS Language Environment services. This storage resides within the CICS

address space, but is not included in the CICS dynamic storage areas (DSAs).

The Language Environment enclave for a JVM can expand, depending on the

storage needs of the JVM. The Language Environment run-time options used by

CICS for a Language Environment enclave control the initial size of, and

incremental additions to, the Language Environment enclave heap storage. Within

this overall allocation of storage, a JVM’s storage heaps are created according to

the settings in the JVM profile for the JVM. “Storage heaps in a JVM” on page 69

explains how these storage heaps are arranged.

You can tune the run-time options that CICS uses for a Language Environment

enclave, so that the amount of storage CICS requests for the enclave is as close as

possible to the amount of storage specified by your JVM profiles. This makes the

most efficient use of MVS storage. “Tuning Language Environment enclave storage

for JVMs” in the CICS Performance Guide tells you how to do this.

JVMs and the z/OS shared library region

The shared library region is a z/OS feature that enables address spaces to share

dynamic link library (DLL) files. This feature enables your CICS regions to share the

DLLs that are needed for JVMs, rather than each region having to load them

individually. This can greatly reduce the amount of real storage used by MVS, and

the time it takes for the regions to load the files.

The storage that is reserved for the shared library region is allocated in each CICS

region when the first JVM is started in the region. (This might be the master JVM

that initializes the shared class cache.) The amount of storage that is allocated is

68 Java Applications in CICS

controlled by the SHRLIBRGNSIZE parameter in z/OS. “Tuning the z/OS shared

library region” in the CICS Performance Guide tells you how to tune the amount of

storage that is allocated for the shared library region.

Storage heaps in a JVM

A JVM manages run-time storage in several segregated heaps. The classes

described in “Classes in a JVM” on page 64, and the objects created by those

classes, are grouped in these storage heaps according to their expected lifetime.

The size of the storage heaps is determined by options in the JVM profile for a

JVM. The level of reusability that you choose for the JVM affects the structure of

the storage heaps in the JVM.

The storage heaps in a JVM are:

System heap

The main system heap contains the class definitions for all the system classes

and standard extension classes, and for the middleware classes. It also

contains the pooled string constant data, and it might contain some system

class objects that persist for the lifetime of the JVM. For continuous JVMs and

single-use JVMs, the system heap is also used for items that would be

contained in the application-class system heap for a resettable JVM. (“How

JVMs are reused” on page 85 explains the differences between these types of

JVM.)

Application-class system heap

The application-class system heap, or ACS heap, is intended to contain objects

which persist for the lifetime of the JVM (that is, they are kept across JVM

reuses) and which are reinitialized if the JVM is reset. Continuous JVMs and

single-use JVMs do not have an application-class system heap, because these

types of JVM are not reset after each use; only resettable JVMs have an

application-class system heap.

 If the JVM has an application-class system heap, that heap contains the class

definitions for application classes on the shareable application class path; that

is, those specified by the ibm.jvm.shareable.application.class.path system

property (see “Classes in a JVM” on page 64). It also contains class objects

that represent the shareable application classes. However, it does not contain

nonshareable application classes on the standard class path, that is, those

specified by the CLASSPATH option in the JVM profile.

Nonsystem heap

This storage heap comprises two other storage heaps of variable size:

Middleware heap

The middleware heap contains objects constructed by middleware classes,

and any objects constructed by system classes as a result of calls from

middleware classes. It also contains static data for the middleware classes

and the system classes, and other string constant data. The objects in this

storage heap have a lifetime that is greater than a single transaction, so

they are kept across JVM resets. For continuous JVMs and single-use

JVMs, the middleware heap is also used for items that would be contained

in the transient heap for a resettable JVM.

Transient heap

The objects in this storage heap are intended to have a lifetime that is the

same as the transaction using the JVM. Continuous JVMs and single-use

JVMs do not have a transient heap, because these types of JVM are not

reset after each use; only resettable JVMs have a transient heap.

Chapter 10. Understanding JVMs 69

If the JVM has a transient heap, that heap contains objects constructed by

shareable and nonshareable application classes, and any objects

constructed by system classes as a result of calls from application classes.

It also contains the class definitions and static data for any application

classes on the standard class path; that is, classes that are specified by the

CLASSPATH option in the JVM profile. The transient heap is completely

deleted when the reset takes place. If subsequent transactions in the

resettable JVM want to use the application classes that were in this heap,

they must reload them from HFS files. In a continuous JVM, which does not

have a transient heap, nonshareable application classes are kept intact

from one JVM reuse to the next.

 Figure 2 on page 71 shows how the storage heaps in a resettable JVM are

allocated from the Language Environment enclave heap storage, depending on the

options specified in the JVM profile for the JVM.

The system heap’s initial storage allocation is set by the Xinitsh option in a JVM

profile. The application-class system heap’s initial storage allocation is set by the

Xinitacsh option in a JVM profile. These two heaps do not have a specified

maximum size; they can grow until they run out of space within the Language

Environment enclave.

The nonsystem heap works differently. The nonsystem heap’s maximum total size is

set by the Xmx option in a JVM profile. From this maximum total, storage is allocated

to the transient heap and to the middleware heap. The transient heap’s initial

storage allocation is set by the Xinitth option in a JVM profile, and the middleware

heap’s initial storage allocation is set by the Xms option in a JVM profile. Both heaps

can grow. The middleware heap is allocated from low storage in the nonsystem

heap and expands upwards; the transient heap is allocated from high storage in the

nonsystem heap, and expands down towards low storage. They can expand only

until the two heaps meet—their combined total size cannot exceed the maximum

size set for the nonsystem heap (the Xmx option).

Continuous and single-use JVMs do not have an application-class system heap or a

transient heap, because these types of JVM are not reset after each use. For these

types of JVM, the nonsystem heap consists only of the middleware heap, and

therefore the Xmx option only limits the maximum size of the middleware heap.

70 Java Applications in CICS

Persistent Reusable Java Virtual Machine User’s Guide, SC34-6201, has more

detailed information about the storage heaps in a JVM.

You can tune the size of the storage heaps to achieve optimum performance for

your JVMs. “Tuning storage for individual JVMs” in the CICS Performance Guide

tells you how to do this.

How CICS creates JVMs

A JVM is created by the CICS launcher program for JVMs. Persistent Reusable

Java Virtual Machine User’s Guide, SC34-6201, explains what a launcher program

does. CICS requests storage from MVS, sets up a Language Environment enclave

for the JVM, and launches the JVM in the Language Environment enclave.

CICS creates JVMs in response to requests to run a Java program. JVMs are

created to fit the needs of a particular Java program. You specify the program’s

needs using the PROGRAM resource definition, just as you would for a non-Java

program. (The CICS Resource Definition Guide has full details about the

PROGRAM resource definition.) Requests to run a Java program can be made in

Language Environment enclave storage

Transient
heap

(Xinitth)

Middleware
heap
(Xms)

System
heap

(Xinitsh)

Application-class
system heap
(Xinitacsh)

Non-system
heap
(Xmx)

Figure 2. JVM storage heap allocations within a Language Environment enclave

Chapter 10. Understanding JVMs 71

various ways; “How CICS locates the PROGRAM resource definition to create a

JVM” on page 74 explains how CICS finds the PROGRAM resource definition in

each case.

To create a JVM for a Java program, CICS needs to obtain the following information

from the PROGRAM resource definition:

v The fact that the program needs a JVM. This is specified in the JVM attribute.

v The execution key (user key or CICS key) for the Java program, which

determines the execution key for the JVM. See “Execution key (EXECKEY

attribute).”

v The main class in the Java program (the Java class whose public static main

method is to be invoked). This is specified in the JVMCLASS attribute.

v The JVM profile for the JVM, which determines various characteristics of the

JVM. See “JVM profiles (JVMPROFILE attribute)” on page 73.

“Enabling applications to use a JVM” on page 119 tells you how to specify all these

items using the PROGRAM resource definition for the Java program. Note that

CORBA stateless objects and enterprise beans do not have a PROGRAM resource

definition as such. The PROGRAM resource definition that is relevant to CORBA

stateless objects and enterprise beans is that for the request processor program.

Execution key (EXECKEY attribute)

A Java program needs to run in a JVM that is in the correct execution key. JVMs

can be in one of two execution keys: user key or CICS key. Running applications in

user key extends CICS storage protection, so most of your Java programs should

run in a JVM in user key. However, if a Java program is part of a transaction that

specifies TASKDATAKEY(CICS), the program needs to run in a JVM in CICS key.

When you set the EXECKEY parameter on the PROGRAM resource definition for a

Java program to USER, CICS gives the program a JVM that is in user key. A J9

TCB is used to run the JVM, and MVS storage is obtained in user key. When you

set the EXECKEY parameter to CICS, CICS gives the program a JVM that is in

CICS key. A J8 TCB is used to run the JVM, and MVS storage is obtained in CICS

key. (“How CICS manages JVMs in the JVM pool” on page 75 explains how JVMs

and TCBs are related.)

The default for the EXECKEY parameter is USER. Before CICS Transaction Server

for z/OS, Version 2 Release 3, the EXECKEY parameter was ignored for Java

programs. CICS always made them run in JVMs in CICS key, because user key

was not available for JVMs. You might find that in most cases, the PROGRAM

resource definitions for Java programs that you created for earlier releases of CICS

are still set to the default of EXECKEY(USER). For CORBA stateless objects and

enterprise beans, CIRP (the default transaction for REQUESTMODEL definitions)

specifies TASKDATAKEY(USER), and the PROGRAM resource definition for

DFJIIRP (the default request processor program) specifies EXECKEY(USER), so by

default CORBA stateless objects and enterprise beans run in user key.

You do not need to make any other changes if you change the EXECKEY

parameter for a Java program. CICS can use the same JVM profile to create JVMs

in both execution keys. A single CICS task can include Java programs running in

CICS key, and Java programs running in user key. However, bear in mind that a

JVM can only be reused by programs that specify the same execution key and JVM

profile on their PROGRAM resource definition. If most of your JVMs are created in

the same execution key, CICS has more opportunities for giving a program an

72 Java Applications in CICS

existing JVM to reuse, rather than creating a new JVM. “How CICS allocates JVMs

to applications” on page 79 explains why reusing existing JVMs is more

economical.

JVM profiles (JVMPROFILE attribute)

CICS can use various options when creating a JVM. You can create different sets

of options, known as JVM profiles, that produce JVMs that are suitable for different

applications. The JVM profiles contain the Java launcher options, and also

reference a JVM properties file containing the system properties for the JVM.

(System properties are key name and value pairs that contain basic information

about the JVM and its environment.) Among other things, the JVM properties file

determines the security properties of the JVM. CICS supplies sample JVM profiles

and JVM properties files, and in many cases, you may find that you can use these

unchanged.

When CICS receives a request to run a Java program, a JVM profile is named on

the PROGRAM resource definition for the Java program. (“How CICS locates the

PROGRAM resource definition to create a JVM” on page 74 explains how CICS

locates the PROGRAM resource definition for different types of request.) CICS

creates a JVM using the options given in this JVM profile, and the system

properties given in the JVM properties file that the JVM profile references.

Alternatively, CICS finds a free JVM that it has already created with these options

and system properties.

A JVM profile specifies, among other things:

v The library path, for native C dynamic link library (DLL) files that are used by the

JVM, including those required to run the JVM and additional native libraries

loaded by trusted code.

v The middleware class path, for classes that are to be treated as trusted

middleware classes (see “Classes in a JVM” on page 64).

v The standard class path, for nonshareable application classes that are to be

discarded if the JVM is reset (see “Classes in a JVM” on page 64).

v The initial size of the storage heaps in the JVM, and how far they can expand

(see “Storage heaps in a JVM” on page 69).

v The maximum size of the stacks for Java code and C code.

v The level of reusability for the JVM: whether it can be reset and reused

(resettable JVMs), or reused without being reset (continuous JVMs), or thrown

away after use (single-use JVMs). “How JVMs are reused” on page 85 explains

more about this.

v Whether the JVM uses the shared class cache, so is a worker JVM (see “The

shared class cache” on page 89).

v The destinations for messages from JVM internals and for output from Java

applications running in the JVM. (“Redirecting JVM output” on page 135 tells you

more about these options.)

v The level of messages that the JVM should issue about its activities.

v Whether the JVM should perform additional checks on certain activities.

v The settings for assertion checking for system classes and application classes.

v Whether the JVM should support debugging.

v The path to the JVM properties file containing the system properties for the JVM.

The CICS System Definition Guide has the full list of options that you can specify

using a JVM profile.

Chapter 10. Understanding JVMs 73

Note: In some earlier versions of CICS, you could use the -Xquickstart option

(specified using the Xservice option) in a JVM profile to reduce the startup

time for the JVM. However, with improvements in JVM technology, the

-Xquickstart option is now permanently enabled, and specifying

-Xquickstart in a JVM profile has no effect.

A JVM properties file specifies, among other things:

v The shareable application class path, for application classes that are to be kept

across JVM reuses and reinitialized if the JVM is reset (see “Classes in a JVM”

on page 64).

v The name server to be used for JNDI references.

v Security information for access to an LDAP name server.

v The names of the JDBC drivers supplied by DB2, and also the DataSource

interface, so that your Java applications running in CICS can access DB2 data.

“Using JDBC and SQLJ to access DB2 data from Java programs and enterprise

beans written for CICS” in the CICS DB2 Guide has more information about this.

v The name of the Java security manager to be used, and the names of security

policy files that define the security properties for the JVM. Setting these system

properties enables the Java 2 security policy mechanism for the JVM.

(“Protecting Java applications in CICS by using the Java 2 security policy

mechanism” on page 333 has more information about this.)

v The working directory.

v Whether event logging should be enabled.

The CICS System Definition Guide has the full list of options that you can specify

using a JVM properties file.

“Setting up JVM profiles and JVM properties files” on page 94 tells you how to set

up suitable JVM profiles and JVM properties files to meet the needs of your

applications.

How CICS locates the PROGRAM resource definition to create a JVM

When an application starts a Java program, CICS obtains the information it requires

to create the JVM from the CICS PROGRAM resource definition that applies to the

request. The request could be one of the following:

v A 3270 or EXEC CICS START request that specifies a transaction identifier.

v An EXEC CICS LINK request, or an ECI or EXCI call that names the Java

program directly.

v An entry in a program list table (PLT).

v A method request for an enterprise bean or CORBA stateless object. This is

matched to a request model, which specifies a transaction identifier.

Enterprise beans and CORBA stateless objects do not have their own

PROGRAM resource definitions. A method request for an enterprise bean or

CORBA stateless object involves a JVM, because the request processor that

handles it executes in a JVM. (A request processor is a program that manages

the execution of an IIOP request, including calling the container to process the

method.) When CICS receives the method request, it compares it to installed

REQUESTMODEL resource definitions, finds the one that best matches the

request, and uses the transaction identifier from that request model to determine

the PROGRAM resource definition. The default transaction for REQUESTMODEL

definitions is CIRP, which specifies the PROGRAM resource definition for the

default request processor program DFJIIRP.

74 Java Applications in CICS

Sometimes, IIOP requests are processed using an existing request processor

transaction, that already has a JVM assigned to it. CICS only looks at the

transaction identifier in any matching request model when a new request

processor transaction is required.

For EXEC CICS LINK requests or ECI or EXCI calls, and for entries in a program

list table, CICS is given the name of the PROGRAM resource definition directly.

However, for 3270 or START requests, and for method requests for an enterprise

bean or CORBA stateless object, CICS determines the PROGRAM resource

definition by looking at the transaction identifier. CICS can then obtain the

information from the PROGRAM resource definition that it needs to create the JVM:

the name of the JVM profile, the main class in the Java program, and the execution

key for the Java program and the JVM. Figure 3 shows this process.

How CICS manages JVMs in the JVM pool

CICS uses the open transaction environment (OTE) to run JVMs. Each JVM runs

on an MVS TCB, which is allocated from a pool of J8- and J9-mode open TCBs,

managed by CICS in the CICS address space. This pool of open TCBs is called the

JVM pool. The priority of the J8- and J9-mode open TCBs in the JVM pool is set

lower than that of the main CICS QR TCB, to ensure that J8- and J9-mode activity

does not affect the main CICS workload that is being processed on the CICS QR

TCB.

Request A
IIOP request

without matching
request model

Request B
Request model

'EJB2’

Request C
Request model

'EJB3’

Transaction
CIRP

Transaction
T3

Transaction
T2

Transaction
T1

JVMClass
com.user.app1

JVMClass
com.ibm.cics.iiop.RequestProcessor

Request D
3270

or
EXEC CICS START

Request E
Program link,
DPL or ECI

request

:
PROGRAM
resource definition
DFJIIRP

:
USERORB1

PROGRAM
resource definition :

PROG1

PROGRAM
resource definition

JVM profile:

Execution key:
User

DFHJVMCD
JVM profile:
USERJVM1
Execution key:
User

JVM profile:
USERJVM2
Execution key:
CICS

Figure 3. How CICS finds the PROGRAM resource definition

Chapter 10. Understanding JVMs 75

When the CICS dispatcher allocates a TCB for a new JVM to run on, it associates

the name of the JVM profile with the TCB, so the TCB and the JVM are linked

together. However, this linkage only lasts for the lifetime of the JVM. If CICS

destroys the JVM (perhaps because an unresettable event has occurred in a

resettable JVM, or because CICS needs the space to create a different type of

JVM), then the TCB remains in the JVM pool, and it can be reallocated for a

different JVM to run on.

CICS creates JVMs and TCBs as they are needed. The CEMT INQUIRE JVMPOOL

command (or the equivalent EXEC CICS command) tells you how many JVMs

CICS currently has.

The total number of TCBs that CICS can create for JVMs is limited by the

MAXJVMTCBS system initialization parameter. This parameter therefore limits the

number of JVMs that you can have in the JVM pool in your CICS region. The

default value for MAXJVMTCBS is 5. The minimum permitted value is 1, meaning

that CICS is always able to create at least 1 TCB in the JVM pool. (JM TCBs, used

for the master JVM that initializes the shared class cache, do not count towards the

MAXJVMTCBS limit. “The shared class cache” on page 89 explains more about JM

TCBs.)

The JVMs that CICS creates can be in one of two execution keys: user key or

CICS key. You can use the CEMT INQUIRE JVM command (or the equivalent

EXEC CICS command) to find out the protection key in which a JVM has been

created. JVMs that are in user key—that is, JVMs intended for programs that

specify EXECKEY(USER) on their PROGRAM resource definition—need to run on

a J9 TCB. JVMs that are in CICS key—that is, JVMs intended for programs that

specify EXECKEY(CICS) on their PROGRAM resource definition—need to run on a

J8 TCB. You cannot specify the proportions of J8 and J9 TCBs that are in the JVM

pool. The MAXJVMTCBS system initialization parameter specifies the maximum

total number of J8 and J9-mode TCBs in the JVM pool, and CICS decides how

many of them should be J8 TCBs and how many should be J9 TCBs, according to

the number of requests that specify each execution key. Statistics are collected

separately for each of the modes, so you can see what proportions of each mode

are in the JVM pool.

Each JVM runs in its own Language Environment enclave, and uses MVS storage.

For this reason, you need to choose a MAXJVMTCBS limit for your CICS region

that takes into account not just the processor time used by the JVMs, but also:

v The amount of MVS storage used by each of your JVMs.

v The amount of MVS storage available for the use of the region.

If you set a MAXJVMTCBS limit that is too high, CICS might attempt to create too

many JVMs for the available MVS storage, resulting in an MVS storage constraint.

CICS has a storage monitor for MVS storage, which notifies it when MVS storage is

constrained or severely constrained, so that it can take short-term action to reduce

the number of JVMs in the JVM pool. (The storage monitor uses exits in Language

Environment routines; it is not a monitoring transaction.) However, the action that

CICS takes when MVS storage is constrained only solves the problem on a

temporary basis. When you receive operator messages relating to MVS storage

constraints, to provide a long-term solution, you need to work out an appropriate

MAXJVMTCBS limit that will prevent the problem from recurring. The CICS

Performance Guide explains more about the action CICS takes to deal with MVS

storage constraints, and tells you how to work out an appropriate setting for the

MAXJVMTCBS system initialization parameter.

76 Java Applications in CICS

In the JVM pool, at any one time, some JVMs and their TCBs might be currently

allocated to tasks—that is, transactions are using them to run Java programs. When

a JVM has finished running a Java program, CICS does not discard it immediately,

unless it is a single-use JVM. Instead, CICS keeps the JVM in the pool in case it

can be reused to run another Java program. The JVM is either reset (if it is defined

as a resettable JVM), or simply kept in the pool without a reset (if it is defined as a

continuous JVM). “How JVMs are reused” on page 85 explains the difference

between these levels of reusability. So the JVM pool might also contain some JVMs

and their TCBs that are not currently allocated to tasks, but are waiting to be

reused.

Figure 4 on page 78 shows an example JVM pool. The MAXJVMTCBS limit for this

JVM pool is 5, and the JVM pool contains 5 JVMs, so CICS has already created

the maximum possible number of JVMs in this JVM pool. The JVM pool contains:

v A JVM (JVM 1) created with the JVM profile DFHJVMPR, in CICS key (so

running on a J8 TCB)

v A JVM (JVM 2) created with the JVM profile USERJVM1, in user key (so running

on a J9 TCB)

v A JVM (JVM 3) created with the JVM profile DFHJVMCD, the JVM profile for the

default request processor program, in user key (so running on a J9 TCB)

v A JVM (JVM 4) created with the JVM profile USERJVM1, in CICS key (so

running on a J8 TCB)

v A JVM (JVM 5) created with the JVM profile DFHJVMPR, in user key (so running

on a J9 TCB)

JVMs 1, 4 and 5 are currently allocated to tasks, but JVMs 2 and 3 are waiting to

be reused.

Chapter 10. Understanding JVMs 77

CICS reduces the number of active JVMs automatically if the workload does not

require them. If a JVM is inactive for 30 minutes, it is discarded. You can also

terminate all the JVMs in the JVM pool (by using the CEMT SET JVMPOOL

Phaseout, Purge or Forcepurge command, or the equivalent EXEC CICS

command), or disable the JVM pool so that it cannot service new requests (by

using the CEMT SET JVMPOOL DISABLED command, or the equivalent EXEC

CICS command).

You can use the EXEC CICS INQUIRE JVM command or the CEMT INQUIRE JVM

command to identify and report the status of each JVM in the JVM pool. Using the

EXEC CICS INQUIRE JVM command, you can inquire on a specific JVM, or you

can browse through all the JVMs in the JVM pool. Using the CEMT INQUIRE JVM

command, you can list all the JVMs in the JVM pool, or inquire on all JVMs in a

specified state. The commands tell you about:

v The JVM profile and execution key of the JVMs in the pool.

v Which of the JVMs in the pool use the shared class cache.

v The age of each JVM.

v The task to which a JVM is allocated, and the time it has been allocated to the

task.

v JVMs that are being phased out as a result of a CEMT SET JVMPOOL

PHASEOUT, PURGE or FORCEPURGE command or CEMT PERFORM

CLASSCACHE PHASEOUT, PURGE or FORCEPURGE command (or the

equivalent EXEC CICS commands).

J9 TCB

Available

for reuse

DFHJVMCD
User key

JVM 3

JVM pool
MAXJVMTCBS=5

J8 TCB

Allocated

to task

USERJVM1
CICS key

JVM 4

J9 TCB

Allocated

to task

DFHJVMPR
User key

JVM 5

J8 TCB

Allocated

to task

DFHJVMPR
CICS key

JVM 1

J9 TCB

Available

for reuse

USERJVM1
User key

JVM 2

Figure 4. An example JVM pool

78 Java Applications in CICS

“Managing your JVMs” on page 132 tells you more about managing the JVM pool.

When an application requests execution of a Java program, CICS first sees if the

Java program can reuse one of the existing JVMs in the JVM pool that is not

currently allocated to a task. If the application can reuse an existing JVM, CICS has

saved the cost of creating a new JVM. If a suitable JVM is not available, and the

limit set by the MAXJVMTCBS system initialization parameter has not yet been

reached, CICS allocates a new open TCB in the correct mode (J8 or J9), and

creates a new JVM. When the limit set by the MAXJVMTCBS system initialization

parameter has been reached, and no more JVMs can be created, CICS decides

how best to allocate the JVMs in the pool to the applications that request them.

“How CICS allocates JVMs to applications” explains how CICS decides whether an

application can reuse an available JVM, and how it allocates JVMs to applications

when it cannot create any more JVMs.

How CICS allocates JVMs to applications

When an application requests execution of a Java program, CICS first tries to find a

suitable JVM that is available for reuse in the JVM pool. An application can reuse

an available JVM if the JVM was created using the JVM profile and the execution

key (USER or CICS) that are specified in the Java program’s PROGRAM resource

definition. If a suitable JVM is available, CICS assigns the JVM to the request.

If a suitable JVM, with the correct JVM profile and execution key, is not available,

and the limit set by the MAXJVMTCBS system initialization parameter has not yet

been reached, and MVS storage is not severely constrained, CICS creates a new

JVM for the Java program. The new JVM has the correct profile and execution key

for the program.

If CICS cannot find a suitable JVM, and a new JVM cannot be created because the

MAXJVMTCBS limit has been reached, or because MVS storage is severely

constrained and CICS is acting as though the MAXJVMTCBS limit had been

reached, then CICS must decide on the best way to provide the application with a

JVM. This involves assessing the need of the application for a JVM, against the

need for different types of JVM in the CICS region. CICS can fulfil an application’s

request for a JVM by:

v Taking a free JVM that has the right execution key but the wrong profile for the

request, destroying the JVM, and re-initializing (that is, re-creating) the JVM on

the old JVM’s TCB, with the correct profile. This is called a mismatch.

v Destroying a free JVM and its TCB that are in the wrong execution key, and

replacing it with a JVM and TCB in the correct execution key. This situation is

known as a steal, or stealing, as the TCB has been “stolen” from one TCB mode

(J8 or J9) to another TCB mode.

Both a mismatch and a steal are expensive, so before taking one of these courses

of action, CICS tries to decide if it is worthwhile. In terms of the need for different

types of JVM in the CICS region, it might be more economical for overall system

performance for CICS to make the application wait until a suitable JVM is available,

and to keep the free JVMs for requests that can benefit more from them. CICS has

a selection mechanism to make this decision.

Figure 5 on page 80 shows this process happening. Our example JVM pool is in

the state shown above in Figure 4 on page 78, with a MAXJVMTCBS limit of 5, and

5 JVMs in the pool. CICS receives two of the requests described above in Figure 3

on page 75.

Chapter 10. Understanding JVMs 79

Request B specifies the PROGRAM resource definition for the default request

processor program DFJIIRP, which names the JVM profile DFHJVMCD, and the

execution key USER. CICS checks the JVM pool, and finds that JVM 3 has the

correct JVM profile and execution key to match the request, and it is available for

reuse. CICS assigns JVM 3 to Request B.

Request D specifies the PROGRAM resource definition for PROG1, which names

the JVM profile USERJVM2, and the execution key CICS. CICS checks the JVM

pool. There is a free JVM, JVM 2, but it has the wrong profile and execution key for

Request D. As the MAXJVMTCBS limit has been reached, CICS cannot create a

new JVM for Request D. So CICS must use the selection mechanism to decide if it

should destroy JVM 2 and its TCB, and replace it with a JVM and TCB that

matches Request D; or if it should make Request D wait, and keep JVM 2 for a

request that can benefit more from it. If Request D is made to wait, it is queued

along with any other requests that are waiting for a JVM.

 Now let’s look in more detail at the whole process. CICS makes its decision to

assign a JVM to an application in two stages:

v It takes one set of actions to deal with incoming requests for a JVM

J9 TCB

Available

for reuse

DFHJVMCD
User key

JVM 3

JVM pool
MAXJVMTCBS=5

J8 TCB

Allocated

to task

USERJVM1
CICS key

JVM 4

J9 TCB

Allocated

to task

DFHJVMPR
User key

JVM 5

J8 TCB

Allocated

to task

DFHJVMPR
CICS key

JVM 1

J9 TCB

Available

for reuse

USERJVM1
User key

JVM 2

Suitable
JVM available

PROGRAM
resource definition:
DFJIIRP

JVM profile:
DFHJVMCD
Execution key:
User

Request B

PROGRAM
resource definition:
PROG1

JVM profile:
USERJVM2
Execution key:
CICS

Request D

No suitable
JVM available

Queue

Destroy
and replace

JVM 2 ?

No

Yes

Figure 5. Dealing with requests for JVMs: example

80 Java Applications in CICS

v It takes another set of actions when it has a queue of requests waiting for a JVM.

How CICS deals with incoming requests for a JVM

To deal with incoming requests for a JVM, CICS takes the actions summarized in

Figure 6:

1. When CICS receives a request for a JVM, and a JVM of the correct profile and

execution key is free, CICS assigns the JVM to the incoming request.

2. If CICS receives a request for a JVM when either:

v there are no free JVMs

v there are free JVMs, but they are not of the correct profile and execution key

for the request

and CICS is able to create more JVMs (because the MAXJVMTCBS limit has

not been reached and MVS storage is not severely constrained), then a TCB is

allocated and a new JVM is created for the request.

3. If CICS receives a request when there are free JVMs, but they are not of the

correct profile and execution key, and CICS is not able to create more JVMs

(because the MAXJVMTCBS limit has been reached or MVS storage is severely

constrained), the selection mechanism is used. The selection mechanism

decides whether the request should wait for a suitable JVM, or whether it should

receive one of the free JVMs.

Allocate TCB,
create new JVM

Add request
to queue

Request for
JVM

Steal (re-create
JVM and TCB)

Mismatch
(re-create
JVM on

same TCB)

Free JVM
with correct
profile and

EXECKEY?

Request
EXECKEY
=free JVM

EXECKEY?

Assign free
JVM to request

Any free
JVM?

MAXJVMTCBS
not reached

and MVS
storage not
constrained

Selection
mechanism
compares

demand and
supply

Request
should wait

Request should
not wait

True

False

YesYes

No No

Yes

No

Figure 6. Dealing with incoming requests for JVMs

Chapter 10. Understanding JVMs 81

a. If the request receives one of the free JVMs, there will be either a mismatch

or a steal, and the JVM and possibly the TCB will need to be re-initialized,

so the selection mechanism avoids this where it makes sense to do so. If

the selection mechanism does decide that the request should receive one of

the free JVMs, CICS checks whether the execution key specified by the

request matches the execution key of the JVM. If the execution key does

not match, the JVM and its TCB are destroyed and reinitialized (a steal). If

the execution key does match, and only the JVM profile is incorrect, the

JVM is reinitialized on the same TCB (a mismatch).

b. If the selection mechanism decides that the request should wait rather than

receiving one of the free JVMs, the request is placed on the queue to wait

for a suitable JVM to become free.

4. If CICS receives a request when there are no free JVMs, and CICS is not able

to create more JVMs (because the MAXJVMTCBS limit has been reached or

MVS storage is severely constrained), the request is placed on the queue to

wait for a JVM to become free.

How CICS deals with a queue of requests waiting for a JVM

When CICS has a queue of requests waiting for a JVM, it takes the actions

summarized in Figure 7 on page 83:

82 Java Applications in CICS

1. If any request that is waiting for a JVM to become free has been waiting longer

than a critical period (which CICS determines), CICS gives it the next available

JVM, whatever the profile and execution key of the JVM. This applies both to

requests that have been placed on the queue because no JVMs are free, and

requests that have been placed on the queue because the free JVMs have the

wrong profile or execution key. There will be either a mismatch or a steal, and

the JVM and possibly the TCB are likely to be re-initialized (unless the request

is in a queue and the next free JVM happens to have the correct profile and

execution key), but the action is worth taking, as the request should not wait

any longer.

2. If requests are queueing and a JVM becomes free, but no requests have been

waiting longer than the critical period, CICS scans through the queue to find the

longest-waiting request that requires a JVM with that profile and execution key.

It gives the free JVM to the longest-waiting request that specifies the correct

profile and execution key. So in this situation, the JVM does not need to be

re-initialized, and a mismatch or steal is avoided.

3. If CICS cannot find a request that matches the profile and execution key of the

free JVM, it scans through the queue again and uses the selection mechanism

Requests are on
queue, JVM

becomes free

Request
EXECKEY
=free JVM

EXECKEY?

Request matches
JVM's profile

and EXECKEY?

Request has
waited longer than

critical period?

Go back to first
request in queue

Assign free
JVM to request

Keep JVM free to
await suitable use

Mismatch (re-create
JVM on same TCB)

Steal (re-create
JVM and TCB)

Selection
mechanism
compares

demand and
supply

Any more
requests to

check

Any more
requests to

check

Request
should wait

Request should
not wait

Yes

No

No

Yes

Yes Yes

Yes

No No

No

Figure 7. Dealing with a queue of requests waiting for a JVM

Chapter 10. Understanding JVMs 83

to look for a request where it will be an advantage to destroy and re-initialize

the free JVM, and re-initialize it as a JVM with the profile and execution key that

the request needs. A mismatch or a steal occurs, but the selection mechanism

ensures that it occurs for a deserving request.

4. If CICS does not find a request in the queue where it will be an advantage to

destroy and re-initialize the free JVM, the JVM is kept free to await a more

appropriate use. For example, CICS might receive a request that needs a JVM

with the profile and execution key of the free JVM; or the first request in the

queue might wait longer than the critical period, and so be given the free JVM;

or CICS might receive a request where it is an advantage to destroy and

re-initialize the free JVM.

The selection mechanism

Let’s look at how the selection mechanism works. As we saw, the mechanism is

used when CICS needs to know if an incoming request should wait for a more

suitable JVM, or when CICS has a queue of requests that do not match a free JVM,

and needs to know if one of them deserves to take, destroy and re-initialize the

JVM. In these situations, the mechanism looks at the complete picture of the need

for different types of JVM in the CICS region. It compares the demand for, and

supply of, JVMs with each profile and execution key, by looking at:

v The historical data relating to recent requests for each type of JVM (the

demand).

v The number of each type of JVM in the pool, and the time for which tasks kept

these JVMs (the supply).

The selection mechanism uses this data to work out whether a given request

should wait for a JVM of the correct profile and execution key, or whether it should

be given a free JVM. The same answer is valid for a request that is waiting in a

queue for a JVM to become free, or for a request that is made when there are free

JVMs but they are not of the correct profile or execution key. In both cases, a

request is made to wait if the data indicates that the demand for the type of JVM

(that is, a JVM with that profile and execution key) which the request wants, is

generally lower than the supply, and so it is not worth destroying and re-creating the

free JVM as a JVM of that type. When the selection mechanism is examining a

queue of requests, it continues down the queue until it reaches a request where the

data indicates that the demand for the type of JVM that the request wants is

generally higher than the supply. For this request, the selection mechanism decides

that because JVMs of that type are needed in the CICS region, it is worth

destroying and re-creating the free JVM as a JVM of that type, and assigns the free

JVM to the request. If the free JVM had the wrong profile but the correct execution

key, this is a mismatch, and the JVM is re-initialized. If the free JVM had the wrong

execution key, this is a steal, and both the TCB and JVM are destroyed and

re-created. So although the overhead of re-initializing the JVM, and if necessary

re-creating the TCB, has still been incurred, the selection mechanism has ensured

that the new JVM and TCB are of a type that is likely to be used in the future.

Under certain circumstances, there could be an unusually large number of requests

for JVMs that have been waiting longer than the critical period. For example, this

could happen when a system dump has just been taken, which delays all

processing. In this case, rather than abandon matching and give each of the waiting

requests the next available JVM, as would normally happen when a request has

been waiting longer than the critical period, CICS temporarily increases the critical

period value for the JVM pool. This enables it to perform matching for the waiting

requests, and avoids incurring abnormal overhead. Once the situation has passed,

CICS lowers the critical period value again.

84 Java Applications in CICS

How JVMs are reused

Every Java program that is run in CICS, runs in a JVM that has been assigned to

run that program alone. This ensures that every transaction involving a JVM is

isolated from every other concurrent transaction involving a JVM. However, when a

Java program has finished using its JVM, the JVM can be reassigned to another,

subsequent program and reused for that program.

The JVM provided by the IBM Software Developer Kit for z/OS, Java 2 Technology

Edition, Version 1.4.2, which features the persistent reusable JVM technology, can

be reused many times by Java applications in CICS, either by a different Java

program in the same transaction, or by another transaction. This model is suited to

CICS transaction processing, which is characterized by short, repetitive

transactions, usually processed in high volumes. The earlier JVM supported by

CICS in CICS TS 1.3, which was provided by the IBM Developer Kit for the Java

Platform 1.1.8, was a single-use JVM, which had to be initialized afresh for every

application. This model typically had high startup overheads. JVM reuse is the

preferred method for running all Java applications in CICS, and provides the only

way to run Java applications comprising enterprise beans or which are started by

IIOP requests.

CICS provides three levels of reusability for JVMs, which you can select depending

on the needs of your applications. The level of reusability for a JVM is controlled by

the REUSE option in the JVM profile for the JVM. The characteristics of the three

levels of reusability can be summarized as follows:

 Table 4. Reuse and reset characteristics of JVM types

JVM type (and

action between

JVM uses)

REUSE option

in profile

Compatible

with the

shared class

cache?

Are program

invocations

allowed to pass

state to

subsequent

invocations?

Are programs

allowed to

change

characteristics of

the JVM?

Performance

Continuous (JVM

reused without

reset)

REUSE= YES Yes1 Yes Yes Highest (JVM not

initialized or reset

for each use)

Resettable (JVM

reused and reset)

REUSE=

RESET

Yes1 No (JVM storage

cleaned up after

each use)

No (JVM

destroyed if this

occurs)

Medium (JVM reset,

but not initialized for

each use)

Single-use (JVM

destroyed)

REUSE= NO No No (JVM destroyed) Yes Lowest (JVM

initialized for each

use)

Note:

1. The worker JVMs in a CICS region all have the same level of reusability as the master JVM in that region, so you

cannot mix resettable worker JVMs and continuous worker JVMs in a CICS region.

The following sections discuss each of these types of JVM in more detail:

v “Continuous JVMs (REUSE=YES)” on page 86

v “Resettable JVMs (REUSE=RESET)” on page 87

v “Single-use JVMs (REUSE=NO)” on page 88

Chapter 10. Understanding JVMs 85

Continuous JVMs (REUSE=YES)

The continuous JVM is kept in the JVM pool for reuse. It is initialized once, and is

reused many times, but it is not reset after each Java program has completed. A

continuous JVM has the option REUSE=YES in its JVM profile.

Compared to the resettable JVM, the continuous JVM has a greater transaction

throughput and lower CPU usage, because it is not performing a reset. The

behavior of the continuous JVM is also more consistent with the behavior of JVMs

on platforms other than CICS, which can be an advantage when executing Java

programs designed for use in a generic reusable Java environment.

Programs that run in a continuous JVM are fully isolated from concurrent activity

elsewhere in CICS. However, because there is no JVM reset after each Java

program, the application code that runs in the next Java program or transaction is

not isolated from the actions of the previous program invocation. Because of this,

you can create persistent items that might be of use to future executions of the

same application in the same JVM. (In a resettable JVM, this is not possible.) You

do need to ensure that programs do not change the state of a continuous JVM in

undesirable ways, or leave any unwanted state in the JVM.

Both middleware classes and application classes are permitted to perform actions in

a continuous JVM which would cause a resettable JVM to be marked unresettable

and destroyed. The application classes are trusted to reset themselves as required

between transactions, and the JVM is not destroyed after use if these events take

place. “Resettable JVMs (REUSE=RESET)” on page 87 explains how a resettable

JVM deals with unresettable actions.

A continuous JVM maintains the content of its storage heaps between one program

invocation and the next. “Storage heaps in a JVM” on page 69 explains the storage

heaps that the JVM uses for different categories of objects. Static or dynamic state

persist in a continuous JVM’s storage heaps, and threads that are not quiesced will

persist, along with their related storage. Shareable application classes are not

reinitialized, and nonshareable application classes are kept intact, instead of being

discarded and reloaded. The application can choose to clean up any unwanted

items and retain any desirable items. Also, a continuous JVM does not invoke the

ibmJvmTidyUp method to request the middleware classes to perform cleanup; this

cleanup will only take place if the middleware classes perform it in the course of

their normal actions. (The CICS-supplied middleware does perform cleanup without

a request from the JVM.)

A continuous JVM can use the shared class cache (that is, it can be a worker JVM).

JVMs that use the shared class cache start up more quickly, and have lower

storage requirements, than JVMs that do not. The worker JVMs in a CICS region all

have the same level of reusability as the master JVM in that region, so you cannot

mix resettable worker JVMs and continuous worker JVMs in a CICS region; you

need to choose one level of reusability for your worker JVMs. “Setting up the

shared class cache” on page 106 has more information about this.

“Programming considerations for continuous JVMs” on page 121 explains the

programming considerations for applications that run in a continuous JVM.

86 Java Applications in CICS

Resettable JVMs (REUSE=RESET)

The resettable JVM is kept in the JVM pool for reuse. The JVM is initialized once,

and is reused many times. It can be reset to a known state between uses. A

resettable JVM has the option REUSE=RESET in its JVM profile (or the older

option Xresettable=YES).

The resettable JVM is normally reset between transactions; that is, after the

application code has terminated for one transaction and before the application code

starts for the next transaction. If more than one Java program is used in a

transaction, the resettable JVM is reset after each Java program has completed.

This level of reusability is equivalent to specifying the -Xresettable option for a

JVM.

The JVM reset isolates invocations of Java programs from changes made by

previous invocations of programs in the same JVM. This means that programs

cannot create persistent items that might be of use to future executions of the same

program, but it also means that programs cannot leave unwanted state in the JVM,

or change the state of the JVM. However, the time and CPU usage required for a

JVM reset reduce the performance of a resettable JVM compared to the

performance of a continuous JVM. An application that has been coded with

attention to the state of the JVM and to the items in static storage can operate

safely without the JVM reset, so it can run in a continuous JVM to achieve

performance enhancements.

There are two stages in the process of resetting a JVM:

1. The resettable JVM checks whether there have been any unresettable events

since the last reset of the JVM. A frequent cause of an unresettable event is

that the Java program that just ran in the JVM has performed an unresettable

action. An unresettable action is when a program uses Java interfaces that

modify the state of a JVM in a way that cannot be properly reset, such as

changing system properties or loading a native library. The Persistent Reusable

Java Virtual Machine User’s Guide, SC34-6201, has more information about

unresettable actions. Another possible cause of an unresettable event is if a

cross-heap reference in the JVM has been found, in the course of a

trace-for-unresettability check, to be still in scope (rather than in garbage).

Unresettable events can also occur if there is an error in the JVM code.

If one or more unresettable events are detected during the execution of a user’s

Java program, the JVM is marked unresettable, and CICS destroys the JVM

when the Java program has finished using it. The storage used by the JVM is

recovered, and a new JVM is initialized. The events that prevent reuse are

logged, provided that the appropriate event logging system properties are

specified in the JVM properties file for the JVM.

Middleware classes, that is, classes specified on the trusted middleware class

path for the JVM, are permitted to perform unresettable actions without the JVM

being marked unresettable. This is because they are trusted by the JVM to

perform the actions necessary to reset themselves between transactions. You

should use the application class paths for your own application classes, to

ensure that if they do perform an unresettable action in a resettable JVM, the

JVM is destroyed. “Classes in a JVM” on page 64 explains more about the

different classes and class paths in a JVM.

2. A resettable JVM cleans up its storage heaps after each use, meaning that state

cannot persist from one program invocation to the next. “Storage heaps in a

JVM” on page 69 explains the storage heaps that the JVM uses for different

categories of objects. In a resettable JVM, the transient heap (which contains

Chapter 10. Understanding JVMs 87

objects constructed by the user’s application classes) is completely deleted

during the reset, and the user’s shareable application classes that are kept in

the application-class system heap are reinitialized during the reset. The

middleware heap, which contains objects constructed by the middleware

classes, is not cleaned up by the JVM during the reset. Instead, the JVM

requests the middleware classes to perform their own cleanup, and the

middleware classes are trusted to reset the objects they have constructed.

A resettable JVM can use the shared class cache (that is, it can be a worker JVM).

JVMs that use the shared class cache start up more quickly, and have lower

storage requirements, than JVMs that do not.

“Programming considerations for resettable JVMs” on page 123 explains the

programming considerations for applications that run in a resettable JVM.

Single-use JVMs (REUSE=NO)

The single-use JVM is not kept in the JVM pool for reuse. With this type of JVM,

the JVM is initialized, is used to run a single Java program, and then is

automatically destroyed. A single-use JVM has the option REUSE=NO (or the older

option Xresettable=NO) in its JVM profile.

The single-use JVM is like the earlier JVM that was supported by CICS in CICS TS

1.3, for which support was removed in CICS TS 2.3 (see “Removal of support for

CICS Transaction Server for OS/390, Version 1 Release 3 JVMs” on page 92). If

you use a single-use JVM, you can invoke the user-replaceable program

DFHJVMAT to change options in the JVM profile, as you could in CICS TS 1.3. This

user-replaceable program cannot be invoked for a continuous JVM or for a

resettable JVM.

The single-use JVM has the lowest performance of any of the JVM types in terms

of transaction throughput, because the JVM must be initialized for each use. Some

time is saved by the absence of a reset, but this is less than the time used to

initialize the JVM.

The single-use JVM is not recommended for running Java applications in a

production environment, and it should not be used for Java applications comprising

enterprise beans or which are started by IIOP requests. It is only beneficial for Java

applications that were originally designed to run in a single-use JVM, and have not

been made suitable for running in a JVM that is intended for reuse. To improve

performance, you should redesign these Java programs as soon as you can, so

that unresettable actions are eliminated, and the programs can run in a continuous

JVM or a resettable JVM.

A single-use JVM cannot use the shared class cache (that is, it cannot be a worker

JVM). Because it cannot use the shared class cache, a single-use JVM has a

longer startup time and higher storage requirements than a resettable or continuous

JVM that is using the shared class cache, as well as incurring the startup costs

each time the JVM is used.

“Programming considerations for single-use JVMs” on page 125 explains the

programming considerations for applications that run in a single-use JVM.

88 Java Applications in CICS

The shared class cache

CICS includes a shared class cache facility for the JVM. The shared class cache is

created using the JVM’s -Xjvmset option. Multiple JVMs can share a single cache

of class files that have already been loaded, including some that have been

optimized by compilation. The shared class cache replaces the system heap and

the application-class system heap for those JVMs, and it can contain middleware

and application classes. JVMs that use the shared class cache start up more

quickly, and have lower storage requirements, than JVMs that don’t.

The shared class cache is initialized by a JVM referred to as the master JVM. The

master JVM cannot be used to run Java applications; it exists only to initialize and

own the shared class cache. The master JVM obtains shared memory in which its

system heap is allocated. The system heap contains class files (including those that

have been optimized by compilation) which can be shared by all the worker JVMs,

and the rest of the shared memory contains other information that is common to the

master and worker JVMs, such as the class loading paths needed to load classes

into the shared class cache. The master JVM can be defined as a resettable JVM,

with the option REUSE=RESET or the older option Xresettable=YES in its JVM

profile, or as a continuous JVM, with the option REUSE=YES in its JVM profile. If

none of these options is included, CICS assumes that the master JVM is resettable.

The master JVM runs on its own open TCB, the JM TCB. JM TCBs are not used for

any other purpose. They do not count towards the MAXJVMTCBS limit, and they

cannot be reused like the J8 and J9 TCBs in the JVM pool.

The JVMs that share the class cache are referred to as worker JVMs, and they can

be used to run Java applications. The worker JVMs use the classes loaded in the

shared class cache, instead of having to load these classes from the file system.

Although the worker JVMs share the class cache, each worker JVM owns all the

working data (objects and static variables) for the applications that run in it. This

helps to maintain the isolation between the Java applications being processed in

the system.

The worker JVMs in a CICS region all have the same level of reusability as the

master JVM. “How JVMs are reused” on page 85 explains the levels of reusability

for JVMs. If the master JVM is a resettable JVM, the worker JVMs are also

resettable, and if the master JVM is a continuous JVM, the worker JVMs are also

continuous. (Single-use JVMs cannot use the shared class cache.) If the REUSE or

Xresettable options are included in the JVM profile for a worker JVM, they are

ignored.

CICS supports one active shared class cache in each region. (A region might also

contain old shared class caches that are being phased out.) The shared class

cache can support the majority of the JVMs in each region. Some of the JVMs in

the region might not be suited to sharing the class cache, because they are debug

JVMs used for problem diagnosis, or because they have an inappropriate level of

reusability. These JVMs can still run as standalone JVMs, and have their own cache

of classes in their storage heaps.

The shared class cache contains:

v The IBM-supplied middleware that you need to run enterprise beans and Java

applications, and any other middleware classes that you have specified (on the

trusted middleware class path).

Chapter 10. Understanding JVMs 89

v Any application classes that are loaded by shared application class loaders,

including classes on the shareable application class path, and classes that are

loaded from a DJAR.

The master and worker JVMs use the same library path, which is the path for native

C dynamic link library (DLL) files that are used by the JVM, to ensure that they are

using the same versions of these files. However, these files are not loaded into the

shared class cache. Unless they are shared through another z/OS facility (such as

the shared library region), a copy is loaded into each worker JVM.

The library path and trusted middleware class path for the shared class cache are

defined in the JVM profile for the master JVM, and the shareable application class

path for the shared class cache is defined in the JVM properties file for the master

JVM. For a worker JVM, CICS ignores these class paths if they are specified in the

worker’s own JVM profile and JVM properties file, and instead uses the values

specified for these class paths in the JVM profile and JVM properties file for the

master JVM.

This means that for a worker JVM, items on the library path, middleware classes,

and shareable application classes must be included in the class paths in the JVM

profile and JVM properties file for the master JVM that initializes the shared class

cache, rather than in the JVM profile and JVM properties file for the JVM where the

application will run. The library path is defined by the LIBPATH option in the JVM

profile, and the trusted middleware class path is defined by the CICS_DIRECTORY,

TMPREFIX, and TMSUFFIX options in the JVM profile. The shareable application

class path is defined by the ibm.jvm.shareable.application.class.path system

property in the JVM properties file.

The standard class path (defined by the CLASSPATH option in the JVM profile) is

the only class path that is taken from the profile for the worker JVM itself, rather

than from the profile for the master JVM. Classes on this class path are loaded into

the individual worker JVMs, and are not cached in the shared class cache. Adding

classes to this class path is detrimental to performance for a resettable worker JVM,

because the classes are reloaded every time the JVM is reset. For a continuous

worker JVM, these classes are kept intact from one JVM reuse to the next, so there

is no need to reload them, but having the classes in every JVM uses more storage

than having a single copy in the master JVM. For these reasons, you should avoid

using the standard class path for worker JVMs in a production environment.

Any worker JVM can modify the shared class cache. When worker JVMs perform

just-in-time (JIT) compilation of classes that are in the shared class cache, they

write the results of the compilation to the shared class cache, so that other worker

JVMs can use the compiled classes. The master JVM that initializes the shared

class cache is invoked in user key, so that worker JVMs that were invoked in user

key can read and write to the shared class cache. Even if all the worker JVMs that

share the class cache are invoked in CICS key, the master JVM and the shared

class cache are still in user key.

Figure 8 on page 91 shows an example JVM pool when a shared class cache has

been introduced for the CICS region. The JVM pool contains:

v Two worker JVMs (JVMs 6 and 7) created with the JVM profile DFHJVMPC, in

user key (so running on a J9 TCB). DFHJVMPC is the CICS-supplied sample

JVM profile for a worker JVM.

90 Java Applications in CICS

v A worker JVM (JVM 9) created with the JVM profile USERJVM1, in CICS key (so

running on a J8 TCB). When the shared class cache was introduced, the JVM

profile USERJVM1 was changed to state that JVMs with that profile use the

shared class cache.

v A standalone JVM (JVM 8) created with the JVM profile DFHJVMPR, in user key

(so running on a J9 TCB). As the JVM was created with DFHJVMPR, it does not

use the shared class cache.

v A standalone JVM (JVM 10) created with the JVM profile USERJVM2, in CICS

key. The JVM profile USERJVM2 was not changed when the shared class cache

was introduced, and JVMs with that profile do not use the shared class cache.

The shared class cache, shown on the right of the diagram, is initialized by a

master JVM created with the JVM profile DFHJVMCC, which is the CICS-supplied

default JVM profile for a master JVM, and the execution key USER. The master

JVM runs on a JM TCB. The worker JVMs (6, 7 and 9) are using the shared class

cache, but the standalone JVMs (8 and 10) are not.

 “Setting up the shared class cache” on page 106 tells you how to set up a shared

class cache in a CICS region, and how to enable JVMs to use it.

You can manage the shared class cache using CICS commands. You can prevent

the shared class cache from starting automatically, start it manually, adjust its size,

update the classes or JAR files that it contains, or terminate it. You can also monitor

its status. “Managing the shared class cache” on page 110 tells you how to operate

the shared class cache.

J9 TCB

Allocated
to task

DFHJVMPR
User key

JVM 8

J8 TCB

Available
for reuse

USERJVM2
CICS key

JVM 10

JVM pool
MAXJVMTCBS=5

J8 TCB

Allocated
to task

USERJVM1
CICS key

JVM 9

Worker

J9 TCB

Allocated
to task

DFHJVMPC
User key

JVM 6
Worker

J9 TCB

Available
for reuse

DFHJVMPC
User key

JVM 7
Worker

Shared
class cache

........

...

....

...........

.........

........
.....

........

JM TCB

DFHJVMCC
User key

Master
JVM

Figure 8. Example JVM pool with a shared class cache

Chapter 10. Understanding JVMs 91

Removal of support for CICS Transaction Server for OS/390, Version 1

Release 3 JVMs

The JVM introduced in CICS TS 1.3 is not supported. Any Java programs that ran

under CICS TS 1.3, and were not previously migrated for CICS Transaction Server

for z/OS, Version 2 Release 2, should be migrated to Java 2 to run under the JVM

provided by the IBM Software Developer Kit for z/OS, Java 2 Technology Edition,

Version 1.4.2 or later, which features the persistent reusable JVM technology.

Application migration issues are discussed at:

http://java.sun.com/j2se/1.4.2/compatibility.dital

http://java.sun.com/j2se/1.4/compatibility.dital

http://java.sun.com/products/jdk/1.3/compatibility.dital#incompatibilities1.3

and

http://java.sun.com/products/jdk/1.2/compatibility.dital

Support for the JVM provided by the IBM Software Developer Kit for z/OS, Java 2

Technology Edition, Version 1.4.2 or later, completely replaces the JVM support

provided in CICS TS 1.3. However, you can modify a JVM to run as a single-use

JVM and not attempt serial reuse. A single-use JVM is initialized, is used to run a

single Java program, and then is automatically destroyed without attempting a JVM

reset. The single-use JVM is like the earlier JVM that was supported by CICS in

CICS TS 1.3. New Java applications should not be developed in such a way that

they can only run in a single-use JVM.

You can modify a JVM to be a single-use JVM by specifying either REUSE=NO, or

the older option Xresettable=NO, in the JVM profile. This might be necessary to run

programs that use Java interfaces, such as multi-threading, that make JVMs

unresettable. “Single-use JVMs (REUSE=NO)” on page 88 has more information

about the appropriate use of single-use JVMs.

For a single-use JVM, you can, if you want, invoke the user-replaceable program

DFHJVMAT to change JVM options. The CICS Customization Guide tells you how

to use DFHJVMAT. DFHJVMAT cannot be used with any type of JVM other than the

single-use JVM. If you need to change JVM options for other types of JVM, do so

by customizing the JVM profile and JVM properties file for the JVM. “Setting up

JVM profiles and JVM properties files” on page 94 explains how to do this.

92 Java Applications in CICS

Chapter 11. Using JVMs

This section tells you how to customize JVM profiles and properties files; manage

your JVMs and shared class cache; and explains how to idenitfy problems with your

Java applications and JVMs.

Before you begin, verify that the Java components are correctly installed using the

tasks outlined in Setting up Java support.

1. Set up a JVM profile and JVM properties file to create a JVM for your Java

application.

JVM profiles allow you to specify options that produce different JVMs depending

on your application requirements. Setting up JVM profiles and JVM properties

files tells you how to choose suitable options for your Java applications, how to

use the supplied sample files, and how to customize these samples or set up

your own files.

2. Set up and customize a shared class cache for your CICS region, so that the

JVMs can start up faster.

a. Setting up the shared class cache tells you how to set up a shared class

cache, and how to enable JVMs to use it. Most JVMs can use the shared

class cache, but if you do not want certain JVMs to use it, you can set them

to run independently as standalone JVMs.

b. Managing the shared class cache tells you how to alter the shared class

cache in your CICS region while CICS is running. You can customize the

shared class cache to prevent it from starting automatically, adjust its size,

update the classes or JAR files that it contains, or terminate it.

Your CICS region is now ready to create JVMs and run Java applications in

them.

3. Enable your application to use a JVM.

a. Set the appropriate Java attributes on the PROGRAM resource definition for

the Java program.

b. Add the classes for the application to the class paths for the JVM, which are

set by using the options in the JVM profiles and JVM properties file for the

JVM.

Enabling applications to use a JVM tells you how to perform both of these

steps.

4. You can monitor the JVMs in your JVM pool, and make tuning adjustments to

achieve optimum performance. “Managing your JVMs” on page 132 tells you

how to monitor your JVMs, how to redirect the output from the JVMs, and how

to tune your JVM pool.

5. If you have any problems with your JVMs or Java applications, there are a

number of facilities you can use to identify the cause.

a. “Problem determination for JVMs” on page 139 gives an overview of the

facilities that you can use to identify any problems with your JVMs, and

“Controlling tracing for JVMs” on page 140 tells you how to control tracing

for your JVMs

b. If a Java application is causing problems, or if you are developing new Java

applications, you can use debugging tools to examine and debug an

application while it is running in a JVM. “Debugging an application that is

running in a CICS JVM” on page 142 tells you how to set up a JVM for

debugging, and how you can use debugging tools and plugins with a JVM.

© Copyright IBM Corp. 1999, 2006 93

|

|

|
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

|

|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

Note that the older type of JVM that was introduced in CICS Transaction Server for

OS/390, Version 1 Release 3 is no longer supported. Any Java programs that ran

under CICS Transaction Server for OS/390, Version 1 Release 3, and were not

previously migrated for CICS Transaction Server for z/OS, Version 2, must be

migrated to Java 2 to run under the persistent reusable JVM. “Removal of support

for CICS Transaction Server for OS/390, Version 1 Release 3 JVMs” on page 92

has more information about this.

Setting up JVM profiles and JVM properties files

The JVM is started by the CICS Java launcher, which uses a set of options known

as a JVM profile. A JVM profile determines the characteristics of a JVM, and

applications specify the JVM profile that they want their assigned JVM to have. In

the JVM profiles used by CICS, you can specify standard options that are

supported in the persistent reusable JVM runtime environment, and also some

non-standard options that are subject to change in future releases of the Java

language specification. You can set up several JVM profiles that use different

options to cater for the needs of different applications.

JVM profiles are text files stored on HFS, and they list the Java launcher options.

Each JVM profile references a JVM properties file, which is another text file

containing the system properties for the JVM. (System properties are key name and

value pairs that contain basic information about the JVM and its environment, such

as the operating system in which the application is running.) Among other things,

the JVM properties file determines the security properties of the JVM. You can edit

JVM profiles and JVM properties files using any standard text editor. CICS supplies

sample JVM profiles and JVM properties files to help you get started.

“How CICS creates JVMs” on page 71 explains how CICS uses JVM profiles, and

gives an overview of the options that you can specify using JVM profiles and their

associated JVM properties files.

To set up JVM profiles and JVM properties files suitable for your applications, follow

the instructions in:

v “Enabling CICS to locate the JVM profiles and JVM properties files”

v “Choosing a JVM profile and JVM properties file” on page 96

v “Customizing or creating JVM profiles and JVM properties files” on page 102

As well as determining the characteristics of a JVM, the JVM profiles and JVM

properties files are used to specify the class paths, that is, the directories that the

JVM searches for the application classes and resources that are needed for your

applications. When you have set up your JVM profiles and JVM properties files, you

will need to add classes to the class paths for each application that uses the JVM

profiles and JVM properties files. “Enabling applications to use a JVM” on page 119

tells you how to do this.

Enabling CICS to locate the JVM profiles and JVM properties files

When an application requests a JVM, CICS needs to find the JVM profile for that

JVM, and the JVM properties file that it references, on HFS. If you alter the location

or the name of either of these items, you need to let CICS know. This section tells

you how to do this.

As JVM profiles and JVM properties files are HFS files, case is important. When

you use the name of a JVM profile or JVM properties file anywhere in CICS, you

must enter it using the same combination of upper and lower case characters that

94 Java Applications in CICS

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|

|

|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

is present in the HFS file name. The CEDA panels accept mixed case input for a

JVM profile name irrespective of your terminal’s UCTRAN setting. However, this

does not apply when the name of a JVM profile is entered on the CEDA command

line, or in another CICS transaction such as CEMT or CECI. If you need to enter

the name of a JVM profile in mixed case when you use CEDA from the command

line or when you use any other CICS transaction, ensure that the terminal you use

is correctly configured, with upper case translation suppressed.

Locating the JVM profiles

When an application requests a JVM and names a particular JVM profile for CICS

to use, CICS looks in the HFS directory that is specified by the JVMPROFILEDIR

system initialization parameter, and loads the JVM profile from that directory.

When you install CICS, the CICS-supplied sample JVM profiles are placed in the

directory /usr/lpp/cicsts/cicsts31/JVMProfiles, where cicsts31 is the value that

you chose for the CICS_DIRECTORY variable used by the DFHIJVMJ job during

CICS installation. The default value of JVMPROFILEDIR is set as

/usr/lpp/cicsts/cicsts31/JVMProfiles, so the supplied setting for

JVMPROFILEDIR points to the default directory for the sample JVM profiles. If you

chose a different name during CICS installation for the directory containing the

sample JVM profiles (that is, if you chose a non-default value for the

CICS_DIRECTORY variable used by the DFHIJVMJ job), and you plan to use the

CICS-supplied sample JVM profiles, change the value of JVMPROFILEDIR to

specify the correct directory name.

If you are using the CICS-supplied sample JVM profiles, and only changing them by

adding your own classes to the class paths, then you can leave JVMPROFILEDIR

to point to the directory containing the sample JVM profiles. However, if

v you create customized versions of the sample JVM profiles and change their

behaviour, but want to keep the original versions for reference

v you create your own JVM profiles

then you might want to keep these JVM profiles in a directory other than the

samples directory, and tell CICS to load the JVM profiles from the directory that you

have used.

If you want CICS to load the JVM profiles from a directory other than the

/usr/lpp/cicsts/cicsts31/JVMProfiles directory, you need to do one of the

following:

v Change the value of the JVMPROFILEDIR system initialization parameter to

specify your preferred directory. (The value that you specify can be up to 240

characters long.)

v Link to your JVM profiles from the directory specified by JVMPROFILEDIR, by

means of UNIX soft links. (This method enables you to store your JVM profiles in

any place in the HFS file system.)

You also need to ensure that CICS has read and execute access on HFS for your

JVM profiles and the directory containing them. “Giving CICS regions permission to

access HFS directories and files” on page 56 tells you how to do this.

Note that the JVM profiles DFHJVMPR and DFHJVMCD, and their associated JVM

properties files, must always be available to CICS. DFHJVMPR is used if a Java

program is defined as using a JVM but no JVM profile is specified, and it is used for

sample programs. DFHJVMCD is used by CICS-supplied system programs,

including the default request processor program (DFJIIRP) and the program that

CICS uses to publish and retract deployed JAR files (DFJIIRQ, the CICS-key

Chapter 11. Using JVMs 95

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

equivalent of DFJIIRP). Both these JVM profiles must therefore either be present in

the directory that is specified by JVMPROFILEDIR, or linked to by means of UNIX

soft links from that directory.

If you need to locate a particular JVM profile in HFS, you can use the EXEC CICS

INQUIRE JVMPROFILE command to find the full path name of the HFS file for the

JVM profile, provided that the JVM profile has been used during the lifetime of the

CICS region. (Note that there is no CEMT equivalent for this command.)

Locating the JVM properties files

When you install CICS, the CICS-supplied sample JVM properties files are placed

in the directory /usr/lpp/cicsts/cicsts31/props/, where cicsts31 is the value that

you chose for the CICS_DIRECTORY variable used by the DFHIJVMJ job during

CICS installation.

The JVMPROPS option on a JVM profile references a JVM properties file by using

its full path name. The CICS-supplied sample JVM profiles reference the sample

JVM properties files as follows:

JVMPROPS=/usr/lpp/cicsts/cicsts31/props/dfjjvmpx.props

where dfjjvmpx.props is the name of the sample JVM properties file that matches

with the sample JVM profile.

If you are using the CICS-supplied sample JVM properties files, and only changing

them by adding classes to the class paths, then you can leave this reference as it

is. However, if you change the name or location of a JVM properties file, or create

your own JVM properties file, you need to change the JVMPROPS option to specify

the correct path name in all the JVM profiles that reference that JVM properties file.

You also need to ensure that CICS has read and execute access on HFS for the

JVM properties file and the directory containing it. “Giving CICS regions permission

to access HFS directories and files” on page 56 tells you how to do this.

Choosing a JVM profile and JVM properties file

To help you get started, CICS supplies several sample JVM profiles and JVM

properties files. Table 5 on page 97 describes these files.

96 Java Applications in CICS

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|

|
|

|
|
|
|
|
|
|
|

|

|
|

Table 5. CICS-supplied sample JVM profiles and JVM properties files

JVM profile Associated JVM

properties file

Comments

DFHJVMPR dfjjvmpr. props Profile DFHJVMPR is the default if no JVM profile is

specified in a Java program’s resource definition. It

specifies REUSE=RESET, which causes CICS to

reset the JVM and make it available for reuse for

another task, after the JVM finishes running each

Java program. JVMs created with the profile

DFHJVMPR do not use the shared class cache (the

profile specifies CLASSCACHE=NO). So JVMs

created with DFHJVMPR are resettable standalone

JVMs.

You can specify this profile for JVMs that are to be

used by your own applications. DFHJVMPR and

DFHJVMPC are the recommended profiles for

defining your own JVMs that are to be used by

enterprise beans.

DFHJVMPR is the default if no other JVM profile is

specified, and it is used for sample programs, so

make sure that it is set up correctly for your CICS

region.

DFHJVMPC dfjjvmpc.props DFHJVMPC is similar to the default JVM profile,

DFHJVMPR, except that it specifies

CLASSCACHE=YES, and omits the options that are

not required when CLASSCACHE=YES is specified.

JVMs with this profile do use the shared class cache,

so they are resettable worker JVMs. This JVM profile

is compatible with the shared class cache defined by

DFHJVMCC.

You can specify this profile for JVMs that are to be

used by your own applications. DFHJVMPR and

DFHJVMPC are the recommended profiles for

defining your own JVMs that are to be used by

enterprise beans. Single-use JVMs, and JVMs that

are configured for debug, cannot use the shared

class cache.

DFHJVMPS dfjjvmps. props DFHJVMPS specifies REUSE=NO, which causes

CICS to make each JVM available for use by a single

Java program only— it is a single-use JVM. JVMs

created with the profile DFHJVMPS do not use the

shared class cache.

You can specify this profile for JVMs that are to be

used by your own applications. However, this profile

is not recommended for JVMs that are to be used by

enterprise beans. DFHJVMPS is only beneficial for

Java applications that were originally designed to run

in a single-use JVM, and have not been made

suitable for running in a JVM that is intended for

reuse. “How JVMs are reused” on page 85 has more

information about this.

Chapter 11. Using JVMs 97

||

||
|
|

|||
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|||
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|||
|
|
|
|

|
|
|
|
|
|
|
|
|

Table 5. CICS-supplied sample JVM profiles and JVM properties files (continued)

JVM profile Associated JVM

properties file

Comments

DFHJVMCC dfjjvmcc.props DFHJVMCC is the default profile used to configure

the master JVM that initializes the shared class

cache. It defines a shared class cache suitable for

use by JVMs in which enterprise beans can be

executed. This JVM profile is the default for the

JVMCCPROFILE system initialization

parameter.“Setting up the shared class cache” on

page 106 has more information about this.

Do not specify this profile for JVMs that are to be

used by your own applications.

DFHJVMCD

(reserved for the

use of CICS)

dfjjvmcd.props CICS-supplied system programs have their own JVM

profile, DFHJVMCD, to make them independent of

any changes you make to the default JVM profile

DFHJVMPR. In particular, the PROGRAM resource

definition for the default request processor program,

DFJIIRP, specifies DFHJVMCD. The CICS-supplied

default is that JVMs created with the profile

DFHJVMCD do not use the shared class cache (the

profile specifies CLASSCACHE=NO), but you can

change that. DFHJVMCD also specifies

REUSE=YES, which gives a continuous JVM, but

you can change that as well.

Do not specify this profile in PROGRAM resource

definitions that you set up for your own applications.

However, because DFHJVMCD is used by

CICS-supplied system programs, you do need to

make sure that it is set up correctly for your CICS

region. Only make the changes to DFHJVMCD that

are necessary to run applications, as described in

“Customizing or creating JVM profiles and JVM

properties files” on page 102.

The sample files are defined with JVMPROPS, LIBPATH, CLASSPATH, and

WORK_DIR parameters that use the symbols &CICS_DIRECTORY, &JAVA_HOME,

and &APPLID. As part of the CICS installation process, you will have run the

DFHIJVMJ job, which is described in the CICS Transaction Server for z/OS

Installation Guide. The DFHIJVMJ job substitutes your own values for the symbol

names, and produces sample files that are tailored for your system.

If you are following a procedure to set up IIOP support or support for enterprise

beans, and you want to use the default request processor transaction CIRP and the

default request processor program DFJIIRP to process requests for CORBA

stateless objects or enterprise beans, then you will be using the JVM profile

DFHJVMCD. When you have specific CORBA stateless objects or enterprise beans

to run, you will need to add classes required by your CORBA stateless objects or

enterprise beans to the appropriate class path for DFHJVMCD, as described in

“Enabling applications to use a JVM” on page 119. If you do not want to customize

this JVM profile at this point, and you are sure that the settings in the profile are

suitable for your system, you can return to the procedure “Setting up the host

system for IIOP” on page 167 or Chapter 17, “Setting up an EJB server,” on page

229. If you think that you might want to customize DFHJVMCD, or if you want to

98 Java Applications in CICS

|

||
|
|

|||
|
|
|
|
|
|
|

|
|

|
|
|

||
|
|
|
|
|
|
|
|
#
#
#

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

select a JVM profile for an alternative request processor program definition that you

plan to set up, carry on reading this section.

If you are setting up standard Java programs or your own request processor

program definition, in many cases you may find that you can use the sample JVM

profiles and JVM properties files with most of the options that are already set in

them, and just add your own application classes to the class paths. Simply select

the appropriate JVM profile for your application’s needs by using the information in

Table 5 on page 97. The JVM profile that you select references the relevant sample

JVM properties file. The two main questions to ask are:

1. Whether you want the JVM to use the shared class cache (DFHJVMPC) or to

run independently as a standalone JVM (DFHJVMPR). “The shared class

cache” on page 89 explains the advantages for JVMs in using the shared class

cache, and what the implications are. Single-use JVMs and JVMs that are

configured for debug cannot use the shared class cache. Because DFHJVMPR

(where JVMs do not use the shared class cache) is the default, if you do want

JVMs to use the shared class cache, ensure that you specify DFHJVMPC as

the JVM profile for those JVMs.

2. Whether you want CICS to attempt to reset the JVM after it finishes running

each Java program (a resettable JVM), or to make it available for reuse without

resetting it (a continuous JVM), or to destroy the JVM without attempting to

reset it (a single-use JVM).“Setting a level of reusability” explains how this can

be specified.

In some cases, you might find that the options in the sample JVM profiles and JVM

properties files need to be changed to fit the needs of a particular application, or of

your CICS region. “Changes that you could make” on page 100 has information

about the circumstances in which you might want to make these changes.

Setting a level of reusability

The level of reusability for a JVM is specified by the REUSE option in the JVM

profile.

The levels of reusability for a JVM are:

v Continuous (option REUSE=YES)

v Resettable (option REUSE=RESET)

v Single-use (option REUSE=NO)

“How JVMs are reused” on page 85 explains the three levels of reusability, the

situations for which each level of reusability is appropriate, and the relative

performance of each level of reusability.

JVMs that use the shared class cache, known as worker JVMs, inherit their level of

reusability from the REUSE option that you specify in the JVM profile for the master

JVM. If you include the REUSE option in the profile for a worker JVM, the option is

ignored. “Defining the shared class cache” on page 107 explains what to consider

when choosing a level of reusability for the master and worker JVMs.

For standalone JVMs that do not use the shared class cache, the REUSE option in

the JVM profile determines the level of reusability. REUSE=RESET, which produces

a resettable JVM, is the default if no REUSE option is specified.

The older option Xresettable is also accepted for migration purposes. If this option

is present in the JVM profile and specified as Xresettable=YES, the JVM is

resettable. If Xresettable=NO is specified, the JVM is single-use. The Xresettable

option cannot be used to specify a continuous JVM. If the Xresettable option and

Chapter 11. Using JVMs 99

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|

|

|

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

the REUSE option are both present in the JVM profile and they conflict, the REUSE

option overrides the Xresettable option, and an information message is issued. It is

advisable to remove the Xresettable option if both the options are present.

The CICS-supplied sample JVM profiles have the following levels of reusability:

v DFHJVMPR specifies REUSE=RESET, which gives a resettable JVM, but you

can change this to REUSE=YES to make a continuous JVM. “Programming for

different types of JVM” on page 120 explains the considerations for application

design and development for Java programs that will run in each type of JVM.

Bear in mind that DFHJVMPR is the default if no JVM profile is specified in a

PROGRAM resource definition.

v DFHJVMPS is a profile for a single-use JVM, specifying REUSE=NO. Its use is

only beneficial for Java applications that were originally designed to run in a

single-use JVM, and have not been made suitable for running in a continuous

JVM or a resettable JVM. You should not attempt to convert any of the other

CICS-supplied sample JVM profiles for this purpose.

v DFHJVMCC, the default profile for the master JVM that initializes the shared

class cache, specifies REUSE=RESET. This means that all the worker JVMs are

resettable. You can change this to REUSE=YES to make all the worker JVMs

continuous. (Note that you cannot mix resettable worker JVMs and continuous

worker JVMs in a CICS region.)

v DFHJVMPC does not contain a REUSE option, because worker JVMs inherit

their level of reusability from the master JVM, so you can change this by

changing the setting in DFHJVMCC.

v DFHJVMCD specifies REUSE=YES, which gives a continuous JVM.

When you are specifying JVM profiles for continuous JVMs, bear in mind that if

more than one application uses the same JVM profile that creates a continuous

JVM, the applications could see each other’s persistent state. If you need to ensure

that an application that uses a continuous JVM does not have any contact with the

persistent state from another application, you should create separate JVM profiles

for the applications to use. (The JVM profiles can be identical in content, provided

that they have different eight-character names.)

Changes that you could make

In some cases, you might find that the options in the sample JVM profiles and JVM

properties files need to be changed to fit the needs of a particular application, or of

your CICS region.

“JVM profiles (JVMPROFILE attribute)” on page 73 gives an overview of the options

that are available for you to change in the JVM profiles and JVM properties files.

Note that if any changes are required to fit with the setup of your CICS region (for

example, if you are required to enable Java 2 security), you need to make the same

changes to the supplied sample JVM profiles DFHJVMPR and DFHJVMCD and

their associated JVM properties files. DFHJVMPR is used if a Java program is

defined as using a JVM but no JVM profile is specified, and it is used for sample

programs. DFHJVMCD is used by CICS-supplied system programs, including the

default request processor program (DFJIIRP) and the program that CICS uses to

publish and retract deployed JAR files (DFJIIRQ, the CICS-key equivalent of

DFJIIRP). Both these JVM profiles therefore need to be configured so that they can

be used in your CICS region.

Among other things, you might want to make the following changes:

v Enable Java 2 security for the JVM. The Java 2 security policy mechanism

protects Java applications running in a JVM, and particularly enterprise beans,

100 Java Applications in CICS

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

from performing a potentially unsafe action. You can enable Java 2 security by

changing the JVM properties file to name a security manager (using the

java.security.manager system property), and to state the location of one or

more security policy files that the security manager will use to determine the

security policy for the JVM (using the java.security.policy system property). The

CICS-supplied sample JVM properties files do not enable Java 2 security.

“Protecting Java applications in CICS by using the Java 2 security policy

mechanism” on page 333 tells you what changes you need to make to the

sample JVM properties files to enable Java 2 security, how to set up a security

policy file, and about the CICS-supplied sample security policy file

dfjejbpl.policy, which defines security properties that are suitable for JVMs

that are used by enterprise beans.

v Change the amount of storage available for the application’s use, by changing

the size of the middleware and transient storage heaps in the JVM (using the

Xmx= option in the JVM profile). The value specified in the supplied sample JVM

profiles is usually 32M, which should be adequate for most purposes. If you have

large Java applications, you might want to increase this value. The CICS

Performance Guide has more information about the storage-related JVM options,

and how to determine suitable values for them.

v Change the destination for messages from JVM internals and for output from

Java applications running in the JVM (using the USEROUTPUTCLASS= option

in the JVM profile). “Redirecting JVM output” on page 135 tells you more about

this option.

v Change your work directory (using the WORK_DIR= option in the JVM profile).

This HFS directory is used for the stdin, stdout and stderr files for JVMs. The

default is the user directory of the CICS region user ID. If you are not using the

USEROUTPUTCLASS= option to redirect the output from your JVMs elsewhere,

you might want to change the work directory to a location that is more convenient

for you.

v Set up the JDBC drivers supplied by DB2, and also the DataSource interface, so

that your Java applications can access DB2 data. “Using JDBC and SQLJ to

access DB2 data from Java programs and enterprise beans written for CICS” in

the CICS DB2 Guide explains how you can do this.You need to use various

options in the JVM profile and JVM properties file, which are described in that

topic.

v Enable or disable assertion checking at runtime. An assertion is a statement in

the Java programming language that enables you to test your assumptions about

your program. Using the ENABLEASSERTIONS, DISABLEASSERTIONS and

SYSTEMASSERTIONS options in the JVM profile, you can enable or disable

assertion checking for system classes, all application classes, a package, or an

individual class. You can find more information about programming with

assertions at http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.dital.

v For CORBA stateless objects and enterprise beans, specify the information that

is necessary to configure the name server to be used for JNDI references (using

the com.ibm.cics.ejs.nameserver system property), and further information that

is necessary if you are using an LDAP name server. The procedures described in

Chapter 14, “Configuring CICS for IIOP,” on page 167 tell you how to do this.

Note: In some previous versions of CICS, you could use the -Xquickstart option

(specified using the Xservice option) in a JVM profile to reduce the startup

time for the JVM. However, with improvements in JVM technology, the

-Xquickstart option is now permanently enabled, and specifying

-Xquickstart in a JVM profile has no effect.

Chapter 11. Using JVMs 101

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

For further information, the CICS System Definition Guide has the full lists of

options that you can specify using JVM profiles and JVM properties files, and “The

sample JVM profiles and JVM properties files” in the CICS System Definition Guide

gives the full text of the CICS-supplied sample files.

If you want to change any of the options in the JVM profiles or JVM properties files,

you can either customize the CICS-supplied sample files, or create your own JVM

profiles or JVM properties files. “Customizing or creating JVM profiles and JVM

properties files” tells you how to do this.

If you do not want to change any of the options specified in the JVM profiles or

JVM properties files, and you have specific applications (standard Java programs,

CORBA stateless objects or enterprise beans) to run, “Enabling applications to use

a JVM” on page 119 tells you how to set up applications to use a JVM profile, and

how to add the classes for the application to the class paths. If you are following a

procedure to set up IIOP support or support for enterprise beans, and you do not

yet have any specific applications to run, you can return to the procedure “Setting

up the host system for IIOP” on page 167 or Chapter 17, “Setting up an EJB

server,” on page 229.

Customizing or creating JVM profiles and JVM properties files

The DFHIJVMJ job places the sample JVM profiles in the HFS directory

/usr/lpp/cicsts/cicsts31/JVMProfiles

where cicsts31 is your chosen value for the CICS_DIRECTORY variable used by

the DFHIJVMJ job during CICS installation.

The sample JVM properties files are in the HFS directory

/usr/lpp/cicsts/cicsts31/props

If you want to change any of the options specified in the JVM profiles or JVM

properties files, you can either customize the CICS-supplied sample files, or create

your own JVM profiles or JVM properties files. “JVM profiles (JVMPROFILE

attribute)” on page 73 gives an overview of the options that are available for you to

change in the JVM profiles and JVM properties files.

Security caution:

1. You should ensure that the JVM properties files are secure,

with update authority restricted to system administrators.

This is because the JVM properties files are typically used to

define sensitive JVM configuration options, such as the

security policy file and the trusted middleware class path.

2. In particular, if you specify that a secure LDAP server is to

be used, by coding java.naming.security.authentication

in the JVM properties files, you also need to specify

java.naming.security.principal and

java.naming.security.credentials. These properties hold

the UserID and password that CICS requires to access the

secure LDAP service, so you need to give particular

attention to the access controls in force at your installation

for the JVM properties files, and any other copies of this

information that you have.

The full list of options that you can specify in JVM profiles and JVM properties files,

and their possible values, are documented in the CICS System Definition Guide.

102 Java Applications in CICS

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|

|

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

Also, if you want to enable Java 2 security, “Protecting Java applications in CICS by

using the Java 2 security policy mechanism” on page 333 tells you what options

you need to specify to achieve this. Some options in JVM profiles and JVM

properties files are ignored for JVMs that share the class cache (those with

CLASSCACHE=YES in their JVM profile, known as worker JVMs), or for the master

JVM that initializes the shared class cache, and some options might or might not be

relevant depending on whether the JVM is a resettable JVM, a continuous JVM, or

a single-use JVM (REUSE=RESET, YES or NO). The information in the full list of

options tells you where these exclusions apply.

For single-use JVMs (that is, with a JVM profile that specifies the option

REUSE=NO), instead of customizing the JVM profile, you can override the options

in it, using the user-replaceable program DFHJVMAT. This program is called at JVM

initialization if you specify INVOKE_DFHJVMAT=YES as an option on the JVM

profile that you want to override. DFHJVMAT cannot be used with any type of JVM

other than the single-use JVM. Normally, a JVM profile provides sufficient flexibility

to configure a JVM as required. If you find that you need to make unusual

modifications, the CICS Customization Guide has more information about using

DFHJVMAT. Resettable and continuous JVMs are more economical than single-use

JVMs, so it is generally best to customize a JVM profile rather than using

DFHJVMAT to override it.

Customizing DFHJVMCD

The JVM profile DFHJVMCD is reserved for use by CICS-supplied system

programs, in particular the default request processor program DFJIIRP (used by the

CICS-supplied CIRP request processor transaction) and its CICS-key equivalent

DFJIIRQ, to make them independent of any changes you make to the default JVM

profile DFHJVMPR. DFHJVMCD has an associated JVM properties file,

dfjjvmcd.props. Do not specify this profile in PROGRAM resource definitions that

you set up for your own applications.

You need to make sure that DFHJVMCD is set up correctly for your CICS region,

but you should customize it only where necessary. Only make the changes to

DFHJVMCD and dfjjvmcd.props that are necessary to run applications, or that are

required for the correct operation of these JVMs in your system. “Options in JVM

profiles” and “System properties for JVMs” in the CICS System Definition Guide tell

you the circumstances in which these changes might be necessary. The comments

in the HFS file DFHJVMCD tell you which options can and cannot be changed, and

dfjjvmcd.props includes only those system properties which you might need to

change. Follow the instructions in “Customizing the supplied sample JVM profiles

and JVM properties files” to make these changes. Do not make any other changes

to DFHJVMCD and dfjjvmcd.props.

Customizing the supplied sample JVM profiles and JVM

properties files

Follow this procedure if you want to keep the existing name for the JVM profile or

JVM properties file that you are customizing. When you keep the existing name for

the file, applications that are already set up to use that JVM profile or JVM

properties file will use your customized file right away. If you want to change the

name of the file, follow the procedure in “Creating your own JVM profiles and JVM

properties files” on page 105; if you do this, applications will not use your new JVM

profile or JVM properties file unless you make further changes to inform the

applications of the new file name. If you are customizing DFHJVMPR, bear in mind

that DFHJVMPR is the default if no JVM profile is specified in a PROGRAM

resource definition, and it is used by sample programs. Either make sure that all

your Java programs which specify DFHJVMPR, or no JVM profile, in their

Chapter 11. Using JVMs 103

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

PROGRAM resource definitions are suited to the changes that you are making, or

copy DFHJVMPR and change its name before carrying out any customization.

To customize the supplied sample files, keeping the file names the same, follow this

procedure:

1. Open the JVM profile or JVM properties file in a standard text editor, and

change the options that you want to change, using the lists of options in the

CICS System Definition Guide for reference. Each parameter or property is

specified on a separate line, and the parameter or property value is delimited by

the end of the line. Follow the coding rules in the CICS System Definition

Guide.

2. If you want to enable Java 2 security, you need to specify some options in the

JVM properties file, and set up one or more security policy files to define

security properties for the JVM. “Protecting Java applications in CICS by using

the Java 2 security policy mechanism” on page 333 tells you what options you

need to specify in the JVM properties file, how to set up a security policy file,

and about the CICS-supplied sample security policy file dfjejbpl.policy, which

defines security properties that are suitable for JVMs that are used by enterprise

beans.

3. For JVM profiles, store the customized JVM profile in the HFS directory that is

specified by the JVMPROFILEDIR system initialization parameter. CICS loads

the JVM profiles from this directory. “Enabling CICS to locate the JVM profiles

and JVM properties files” on page 94 explains how to identify and change this

directory. If this directory is set to be the directory containing the supplied

sample JVM profiles, you can simply store your customized profiles in the

samples directory, replacing the supplied samples. (If you do this, keep a copy

of the original supplied sample JVM profiles in another folder for future

reference.) Ensure that CICS has read and execute access on HFS for your

JVM profile and the directory containing it. “Giving CICS regions permission to

access HFS directories and files” on page 56 tells you how to do this.

4. For JVM properties files, it is simplest to store the customized JVM properties

file in the HFS directory /usr/lpp/cicsts/cicsts31/props, where the supplied

sample JVM properties files were placed at installation. (Keep a copy of the

original supplied sample JVM properties files in another folder.) You need to

specify the full path name for the JVM properties file, using the JVMPROPS

option, in all the JVM profiles that reference that JVM properties file. For

example, a JVM profile that states JVMPROPS=/usr/lpp/cicsts/cicsts31/props/
dfjjvmpr.props references the JVM properties file dfjjvmpr.props in the

directory that contains the supplied sample JVM properties files. If you place the

customized JVM properties file back in its original directory, the correct path

name will already be specified in the JVM profiles. If you prefer to store your

customized JVM properties file in a different directory, change the JVMPROPS

option on all the relevant JVM profiles to state the new path name for the file.

Also ensure that CICS has read and execute access on HFS for your JVM

properties file and the directory containing it. “Giving CICS regions permission to

access HFS directories and files” on page 56 tells you how to do this.

Now that you have customized the JVM profiles or JVM properties files, if you have

specific applications (standard Java programs, CORBA stateless objects or

enterprise beans) to run, “Enabling applications to use a JVM” on page 119 tells

you how to set up applications to use a JVM profile, and how to add the classes for

the application to the class paths. If you are following a procedure to set up IIOP

support or support for enterprise beans, and you do not yet have any specific

applications to run, you can return to the procedure “Setting up the host system for

IIOP” on page 167 or Chapter 17, “Setting up an EJB server,” on page 229.

104 Java Applications in CICS

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

Creating your own JVM profiles and JVM properties files

Follow this procedure if you want to create a JVM profile or JVM properties file with

a different name to the supplied sample files. When you create a file with a new

name:

v For JVM profiles, you will need to specify the profile name in the PROGRAM

resource definition for any applications that you want to use your new JVM

profile.

v For JVM properties files, you will need to specify the file name in any JVM

profiles that you want to reference your new JVM properties file.

To minimize administration, if you want to set up JVM profiles and JVM properties

files that are to be used by most of your applications, you might prefer to customize

the supplied sample files and keep their existing names, following the procedure in

“Customizing the supplied sample JVM profiles and JVM properties files” on page

103. However, if you want to set up a JVM profile or JVM properties file that is to

be used by a small number of applications, or if you want to ensure that the default

JVM profile DFHJVMPR is not affected by your modifications, you might want to

create a file with a new name.

To create your own JVM profiles and JVM properties files, follow this procedure:

1. Base your JVM profile or JVM properties file on one of the supplied sample

JVM profiles or JVM properties files. “Choosing a JVM profile and JVM

properties file” on page 96 lists and describes these files. Note that the supplied

sample JVM profile DFHJVMPS is not recommended for use with new Java

applications and especially enterprise beans, so if you are creating a profile for

a JVM in which these applications will execute, do not base it on DFHJVMPS.

2. Create the JVM profile or JVM properties file in a standard text editor, using the

lists of options in the CICS System Definition Guide for reference. Each

parameter or property is specified on a separate line, and the parameter or

property value is delimited by the end of the line. Follow the coding rules in the

CICS System Definition Guide.

3. If you want to enable Java 2 security, you need to include some system

properties in the JVM properties file, and set up one or more security policy files

to define security properties for the JVM. “Protecting Java applications in CICS

by using the Java 2 security policy mechanism” on page 333 tells you what

system properties you need to include in the JVM properties file, how to set up

a security policy file, and about the CICS-supplied sample security policy file

dfjejbpl.policy, which defines security properties that are suitable for JVMs

that are used by enterprise beans.

4. Give your JVM profile or JVM properties file a suitable name. The name of a

JVM profile can be up to 8 characters in length. The name of a JVM properties

file can be any length, but for ease of use, choose either the name of the JVM

profile that references it, or another short name.

The name of a JVM profile or JVM properties file can include the following

characters:

A-Z a-z 0-9 @ # . - _ % & ¢ ? ! : ∨ " = , ; < >

When creating your own JVM profile or JVM properties file, do not give it a

name beginning with DFH, because these characters are reserved for use by

CICS.

As JVM profiles and JVM properties files are HFS files, case is important.

Remember that when you use the name of a JVM profile or JVM properties file

anywhere in CICS, you need to enter it using the same combination of upper

and lower case characters that is present in the HFS file name. Although the

Chapter 11. Using JVMs 105

|

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|

|

|
|
|

|
|
|
|

CEDA panels accept mixed case input for a JVM profile name irrespective of

your terminal’s UCTRAN setting, this does not apply when the name of a JVM

profile is entered on the CEDA command line, or in another CICS transaction

such as CEMT or CECI. Bear this in mind when choosing a name for your JVM

profile or JVM properties file.

5. For JVM profiles:

a. Store your JVM profile in the HFS directory that is specified by the

JVMPROFILEDIR system initialization parameter. CICS loads the JVM

profiles from this directory. “Enabling CICS to locate the JVM profiles and

JVM properties files” on page 94 explains how to identify and change this

directory. Ensure that CICS has read and execute access on HFS for your

JVM profile and the directory containing it. “Giving CICS regions permission

to access HFS directories and files” on page 56 tells you how to do this.

b. Specify the name of your JVM profile on the JVMPROFILE option of the

PROGRAM resource definitions for the Java programs that you want to use

this JVM profile. (“Enabling applications to use a JVM” on page 119 tells you

more about doing this.) Alternatively, you can use a CEMT SET PROGRAM

JVMPROFILE command (or the equivalent EXEC CICS command) to

change the JVM profile from that specified on the installed PROGRAM

resource definitions. However you specify the JVM profile, ensure that you

use the same combination of upper and lower case characters that is

present in the HFS file name of the JVM profile.

6. For JVM properties files:

a. Store your JVM properties file in any HFS directory. Ensure that CICS has

read and execute access on HFS for your JVM properties file and the

directory containing it. “Giving CICS regions permission to access HFS

directories and files” on page 56 tells you how to do this.

b. Specify the full path name for the JVM properties file, using the JVMPROPS

option, in all the JVM profiles that you want to reference that JVM properties

file. For example, a JVM profile that states JVMPROPS=/usr/lpp/cicsts/
cicsts31/myprops/myjvm.props references the JVM properties file

myjvm.props, in the directory /usr/lpp/cicsts/cicsts31/myprops. Ensure

that you use the same combination of upper and lower case characters that

is present in the HFS file name of the JVM properties file.

Now that you have created your own JVM profiles or JVM properties files, if you

have specific applications (standard Java programs, CORBA stateless objects or

enterprise beans) to run, “Enabling applications to use a JVM” on page 119 tells

you how to set up applications to use a JVM profile, and how to add the classes for

the application to the class paths. If you are following a procedure to set up IIOP

support or support for enterprise beans, and you do not yet have any specific

applications to run, you can return to the procedure “Setting up the host system for

IIOP” on page 167 or Chapter 17, “Setting up an EJB server,” on page 229.

Setting up the shared class cache

“The shared class cache” on page 89 explains how the shared class cache works,

and how JVMs benefit from using it.

CICS supports one active shared class cache in each region. This enables you to

support the majority of the JVMs in each region. Some of the JVMs in the region

might not be suited to sharing the class cache, because they have an inappropriate

106 Java Applications in CICS

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|

level of reusability, or because they are debug JVMs used for problem diagnosis.

These JVMs can still run as standalone JVMs, and have their own cache of classes

in their storage heaps.

Before setting up the shared class cache, you need to check the options for

semaphores that you have set in the BPXPRMxx members of SYS1.PARMLIB. The

master JVM that initializes the shared class cache uses a single semaphore ID, and

requests a set of 32 semaphores, so you need to:

v Ensure that the MNIDS value is enough for the maximum number of semaphore

IDs that are in use at one time, including the shared class cache. Depending on

the frequency with which you expect to reload the shared class cache, you might

want to allow two or possibly three semaphore IDs for the shared class cache.

One semaphore ID would be used by the master JVM that controls the active

shared class cache, and the remainder would be used by a master JVM that

controls a shared class cache that is being phased out, or by a new master JVM

that controls a shared class cache that is being loaded. It is unlikely that you

would need more than two semaphore IDs for the shared class cache, except in

a CICS region that is being heavily used for development and testing.

(“Managing your JVM pool for performance” in the CICS Performance Guide has

more information about the usage that could be expected in a production system

or in a development system.) If you need to change the MNIDS value, you can

do this by using the IPCSEMNIDS parameter that is in the BPXPRMxx members

of SYS1.PARMLIB.

v Ensure that the MNSEMS value is enough for the maximum number of

semaphores that the master JVM requests in a semaphore set—the value must

be 32 or greater. If you need to change the MNIDS value, you can do this by

using the IPCSEMNSEMS parameter that is in the BPXPRMxx members of

SYS1.PARMLIB.

See z/OS UNIX System Services Planning, GA22-7800, in the topic “Customizing

the BPXPRMxx parmlib members”, and z/OS MVS Initialization and Tuning

Reference, SA22-7592, in the topic “BPXPRMxx (z/OS UNIX System Services

parameters)“, for more information about adjusting these parameters. The CICS

Transaction Server for z/OS Installation Guide has information about other

parameters in the BPXPRMxx members of SYS1.PARMLIB that need to be

changed to use JVMs in a CICS environment.

Now that you have set up a shared class cache in your CICS region, “Managing the

shared class cache” on page 110 tells you how to manage it.

Defining the shared class cache

Use the JVMCCSIZE system initialization parameter to specify the initial size of the

shared class cache. The size of the shared class cache determines the number of

classes that it can contain. The default size is 24MB. You can change the size of

the shared class cache while CICS is running; “Adjusting the size of the shared

class cache” on page 112 tells you how.

Besides JVMCCSIZE, the shared class cache is mainly defined through the JVM

profile that is used for the master JVM that initializes the shared class cache.

The JVM profile for a master JVM is similar to the JVM profile for any other JVM.

The CLASSCACHE_MSGLOG option can be specified to name the file for

messages from the master JVM (the default is dfhjvmccmsg.log). Some options (for

example, the Xdebug option) are not appropriate for a master JVM, and if they are

specified in the JVM profile that is used for the master JVM, CICS ignores them.

Chapter 11. Using JVMs 107

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

|
|

|
|
|
|
|

The CICS System Definition Guide has information about the options that are not

appropriate in the JVM profile for a master JVM. As for any other JVM profile, you

need to ensure that the settings in the profile are suitable for your system.

The JVM properties file for a master JVM omits most of the system properties that

would be specified for a normal JVM, because the master JVM is not used to run

Java applications. The only system property that needs to be specified is

ibm.jvm.shareable.application.class.path, which you should use to specify the

shareable application classes for all the applications that will run in worker JVMs

that use the shared class cache. The CICS System Definition Guide has more

information about other system properties that you might also want to specify in the

JVM properties file for a master JVM.

One important decision to make about the master JVM is whether to define it as a

resettable JVM, or as a continuous JVM. (It cannot be defined as a single-use

JVM.) “How JVMs are reused” on page 85 explains the levels of reusability for

JVMs.

The worker JVMs in a CICS region all inherit their level of reusability from the

REUSE option specified in the JVM profile for the master JVM in that region. (If you

include the REUSE option in the profile for a worker JVM, the option is ignored.) If

you specify the option REUSE=RESET or the older option Xresettable=YES in the

JVM profile for the master JVM, the master JVM and all the worker JVMs are

resettable. If you specify the option REUSE=YES in the JVM profile for the master

JVM, the master JVM and all the worker JVMs are continuous. If none of these

options is included, CICS assumes that the master JVM is resettable.

If your worker JVMs are continuous JVMs, they have a greater transaction

throughput and lower CPU usage than if they are resettable JVMs. If you choose to

make your master JVM and worker JVMs into continuous JVMs, you need to note

the considerations for programming and for application design which are described

in “Programming for different types of JVM” on page 120.

You cannot mix resettable worker JVMs and continuous worker JVMs in a CICS

region; you need to choose one level of reusability for your worker JVMs. If you

have some applications that need to run in a resettable JVM and some that need to

run in a continuous JVM, and you want both types to use the shared class cache,

then you could set up a master JVM and worker JVMs with either level of

reusability in separate CICS regions. If you require both resettable and continuous

JVMs in a single CICS region that has a shared class cache, you need to choose

which type should be able to use the shared class cache, and which type should be

standalone. Single-use JVMs are always standalone JVMs.

By default, the supplied sample JVM profile DFHJVMCC is used for the master

JVM that initializes the shared class cache. DFHJVMCC specifies the option

REUSE=RESET, so the master JVM and worker JVMs are resettable. You can

modify DFHJVMCC to change this setting or other settings in the JVM profile, or

you can substitute your own JVM profile. “Customizing or creating JVM profiles and

JVM properties files” on page 102 tells you how to change a JVM profile or create

your own.

If you modify DFHJVMCC, CICS uses the new version of the JVM profile for the

master JVM the next time the shared class cache is started. If the shared class

cache is already started, and you want to switch to the new version of the JVM

profile right away, use the CEMT PERFORM CLASSCACHE RELOAD command

108 Java Applications in CICS

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

(or the equivalent EXEC CICS command) to create a new shared class cache. The

master JVM that initializes the new shared class cache will use the new version of

the JVM profile.

If you create your own JVM profile to use instead of DFHJVMCC, there are two

ways that you can specify a different JVM profile to be used for the master JVM:

1. Name the JVM profile you want to use on the JVMCCPROFILE system

initialization parameter. Using the system initialization parameter ensures that

this JVM profile is used for the master JVM following an initial or cold start of

CICS. The supplied sample JVM profile DFHJVMCC is the default value for this

system initialization parameter.

2. Use either the CEMT PERFORM CLASSCACHE RELOAD command (or the

equivalent EXEC CICS command) if the shared class cache is started, or the

CEMT PERFORM CLASSCACHE START command (or the equivalent EXEC

CICS command) if the shared class cache is stopped, to create a new shared

class cache. Use the PROFILE option on the command to specify the JVM

profile to be used for the master JVM that initializes the new shared class

cache. The new JVM profile that you specified is then used for each subsequent

initialization of the shared class cache. The new setting is remembered across a

warm or emergency start, unless the JVMCCPROFILE system initialization

parameter is specified as an override at startup, in which case the value from

the JVMCCPROFILE system initialization parameter is used. On an initial or

cold start of CICS, CICS uses the JVM profile named on the JVMCCPROFILE

system initialization parameter.

Remember that when you specify the JVM profile, whether by using

JVMCCPROFILE, or by using a CEMT PERFORM CLASSCACHE START or

RELOAD command, or by using the equivalent EXEC CICS commands, you must

enter it using the same combination of upper and lower case characters that is

present in the HFS file name. If you use the CEMT transaction, and the name of

the JVM profile is in mixed case or lower case, ensure that the terminal you use is

correctly configured, with upper case translation suppressed. If you use an EXEC

CICS command, the value is always accepted in mixed case.

Use the CEMT INQUIRE CLASSCACHE command (or the equivalent EXEC CICS

command) to find out what JVM profile currently applies to the master JVM that

initializes the shared class cache.

Enabling JVMs to use the shared class cache

To enable a JVM to be a worker JVM and use the shared class cache, you need to

ensure that the JVM profile used by that JVM states CLASSCACHE=YES. If any

JVMs in the region cannot share the class cache, because they have an

inappropriate level of reusability or because they are being used for problem

diagnosis, they need to use a JVM profile that states CLASSCACHE=NO. The

EXEC CICS INQUIRE JVMPROFILE command tells you whether a particular JVM

profile states CLASSCACHE=YES or CLASSCACHE=NO. (There is no CEMT

equivalent for this command.) “Setting up JVM profiles and JVM properties files” on

page 94 tells you how to select and modify JVM profiles. “Enabling applications to

use a JVM” on page 119 tells you how to specify the JVM profile that an application

requests.

The default JVM profile, DFHJVMPR, states CLASSCACHE=NO. If you use this

JVM profile, the JVM does not use the shared class cache, and runs independently

as a standalone JVM.

Chapter 11. Using JVMs 109

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

The supplied sample JVM profile DFHJVMPC states CLASSCACHE=YES. It is

compatible with the shared class cache that is created by a master JVM with the

JVM profile DFHJVMCC. If you want a JVM to use the shared class cache, you can

name DFHJVMPC as the JVM profile on the PROGRAM resource definition for the

request, or you can name your own JVM profile based on DFHJVMPC that states

CLASSCACHE=YES. JVMs created using JVM profiles that state

CLASSCACHE=YES are known as worker JVMs.

The JVM profile for CICS-supplied system programs, DFHJVMCD, states

CLASSCACHE=NO. This JVM profile is specified by the PROGRAM resource

definition for the default request processor program, DFJIIRP. Enterprise bean

requests that invoke the CICS-supplied CIRP request processor transaction will

therefore use this JVM profile. If you want these enterprise beans to use the shared

class cache, change DFHJVMCD to state CLASSCACHE=YES.

If you specify CLASSCACHE=YES in a JVM profile, certain options in the JVM

profile and JVM properties file are ignored. If these options are found in the JVM

profile or JVM properties file for a worker JVM, CICS does not pass them on to the

JVM. If values for these options are required, they are taken from the JVM profile

and JVM properties file for the master JVM that initializes the shared class cache.

These options are not used in the CICS-supplied sample JVM profile DFHJVMPC.

If you have converted another JVM profile to use the shared class cache, you can

either remove the options (by commenting out or deletion) from the JVM profile or

JVM properties file, or leave them there. The CICS System Definition Guide tells

you what options and system properties are treated in this way.

The options that are ignored for a worker JVM include the REUSE option, which

specifies the level of reusability for the JVM. “How JVMs are reused” on page 85

explains the levels of reusability for JVMs. Worker JVMs inherit their level of

reusability from the master JVM, so they do not need the REUSE option in their

JVM profiles. The master JVM and worker JVMs in a CICS region can be resettable

or continuous, depending on the REUSE setting in the master JVM profile. If you

choose to make your master JVM and worker JVMs into continuous JVMs, you

need to note the considerations for programming and for application design which

are described in “Continuous JVMs (REUSE=YES)” on page 86.

Also among the options that are ignored for a worker JVM are the options that

specify the library path (in the JVM profile), the trusted middleware class path (in

the JVM profile), and the shareable application class path (in the JVM properties

file). These class paths are taken from the values for the master JVM. If you have

converted an existing JVM profile to use the shared class cache, you need to

ensure that directory paths specified by these options in the JVM profile or its JVM

properties file are transferred to the library path, the middleware class path or the

shareable application class path for the master JVM. “Adding application classes to

the class paths for a JVM” on page 128 tells you how to do this.

Managing the shared class cache

“The shared class cache” on page 89 explains how the shared class cache works,

and how resettable JVMs benefit from using it. “Setting up the shared class cache”

on page 106 tells you how to set up a shared class cache.

Once you have set up a shared class cache in your CICS region, you might need to

perform the following management tasks:

v “Starting the shared class cache” on page 111

110 Java Applications in CICS

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|

v “Adjusting the size of the shared class cache” on page 112

v “Updating classes or JAR files in the shared class cache” on page 113

v “Terminating the shared class cache” on page 116

v “Monitoring the shared class cache” on page 118

Starting the shared class cache

You can start the shared class cache in three ways:

1. You can set the shared class cache to start at CICS initialization, by setting

the JVMCCSTART system initialization parameter to YES. (This setting also

enables autostart.)

2. You can enable autostart for the shared class cache. If you enable autostart,

the shared class cache is started automatically as soon as CICS receives a

request to run a Java application in a JVM whose profile requires the use of the

shared class cache. When you first use CICS, autostart is enabled by default. If

you have disabled autostart, there are three ways to enable it again:

a. To enable autostart for the next CICS execution, set the JVMCCSTART

system initialization parameter to either YES, or AUTO. YES makes the

shared class cache start at CICS initialization, and also enables autostart.

AUTO just enables autostart, and does not make the shared class cache

start at CICS initialization.

b. When CICS is running, use the CEMT SET CLASSCACHE AUTOSTARTST

command (or the equivalent EXEC CICS command) to enable autostart.

c. If you are terminating (phasing out, purging or forcepurging) the shared

class cache, use the AUTOSTARTST option on the CEMT PERFORM

CLASSCACHE command (or the equivalent EXEC CICS command) to

enable autostart.

Use the CEMT INQUIRE CLASSCACHE command (or the equivalent EXEC

CICS command) to find out the current status of autostart for the shared class

cache. When you change the autostart status of the shared class cache while

CICS is running, subsequent CICS restarts use the most recent setting that you

made using the CEMT SET CLASSCACHE command or the CEMT PERFORM

CLASSCACHE command (or the equivalent EXEC CICS commands), unless

the system is INITIAL or COLD started, or the JVMCCSTART system

initialization parameter is specified as an override at startup. In these cases, the

setting from the system initialization parameter is used.

3. When CICS is running, if you have disabled autostart, or if autostart is enabled

but no JVM has yet required the shared class cache, you can start the shared

class cache manually by entering a CEMT PERFORM CLASSCACHE START

command (or the equivalent EXEC CICS command). When you use this

command, you can specify the size of the shared class cache (CACHESIZE

option), and the profile that is used for the master JVM that initializes the shared

class cache (PROFILE option).

If your CICS system is WARM or EMERGENCY started, and the shared class

cache was started when the system shut down, then it is started at CICS

initialization. This happens whatever the autostart status is, unless the

JVMCCSTART system initialization parameter is specified as an override at startup,

in which case the behaviour specified by the system initialization parameter is used.

When you start the shared class cache by an explicit command or by the autostart

feature, there is a short delay while the master JVM initializes the shared class

cache. If CICS receives requests during this period for worker JVMs that require the

Chapter 11. Using JVMs 111

|

|

|

|

|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

use of the shared class cache, the requests wait until the startup process is

complete and the shared class cache is ready.

When you have decided how and when you normally prefer the shared class cache

to start in your CICS system, use the JVMCCSTART system initialization parameter

to set the normal behaviour for the shared class cache. The CICS default setting for

the JVMCCSTART system initialization parameter is AUTO. This setting means that

when you start CICS, the shared class cache does not start up immediately.

However, autostart is enabled, so the shared class cache starts automatically when

the first worker JVM requires it. This is the situation when you first use CICS.

If you prefer the shared class cache to start up during CICS initialization, so that it

is ready and waiting when the first worker JVM requires it, set the JVMCCSTART

system initialization parameter to YES. This setting enables autostart, so if you stop

the shared class cache, it starts again automatically when the first worker JVM

requires it.

If you prefer the shared class cache not to start at all until you enter a specific

command, set the JVMCCSTART system initialization parameter to NO. This setting

disables autostart, so when you want to start the shared class cache, you need

either to enter a CEMT PERFORM CLASSCACHE START command (or the

equivalent EXEC CICS command), or to enable autostart by one of the methods

described above. If a Java program needs to run in a JVM that uses the shared

class cache, and the shared class cache has not been started, and autostart is

disabled, then the program cannot run.

Adjusting the size of the shared class cache

When the master JVM initializes the shared class cache, the amount of storage in

the cache is fixed. When the storage in the shared class cache becomes full,

worker JVMs cannot add any more classes to it, and the JIT compiler might not be

able to carry out any further processing of the classes that are already loaded. You

can use the CEMT INQUIRE CLASSCACHE command (or the equivalent EXEC

CICS command) to report on the size of the shared class cache (CACHESIZE), and

the amount of free space within it (CACHEFREE, which is part of the extended

display for the shared class cache in CEMT).

Use the system initialization parameter JVMCCSIZE to specify the initial setting for

the size of the shared class cache. The default is 24MB.

The size that you specify for the shared class cache needs to be sufficient to

contain:

v The classes for your applications, except for any classes on the standard class

path (the CLASSPATH option in the JVM profile), because those classes are not

placed in the shared class cache.

v The JIT-compiled code for the classes.

Bear in mind that the JIT-compiling process happens at variable times during the

execution of your applications. To identify the total size of the classes and

JIT-compiled code for an application, run the application repeatedly in a

development environment, using the shared class cache. While you are running the

application, monitor the amount of free space in the shared class cache, which is

reported by the CACHEFREE parameter on the CEMT INQUIRE CLASSCACHE

command (or the equivalent EXEC CICS command). After a sufficient number of

uses of the application (perhaps around one thousand), you should find that the

amount of free space has stabilised, meaning that the JIT-compiling process is

112 Java Applications in CICS

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|

largely complete. Repeat this process for each application that will be using the

shared class cache. Add together the amount of storage used by each application,

and add on a suitable safety margin (to allow for any late JIT-compiling or future

application changes), to arrive at an approximate size for the shared class cache.

If the storage in your shared class cache becomes full, worker JVMs can continue

to use the classes and compiled code that are already present in it. However, if a

worker JVM subsequently tries to add a new class or the results of JIT-compilation

to the shared class cache, the worker JVM throws a java.lang.OutOfMemoryError. If

you find that this is happening, you need to increase the size of the shared class as

soon as possible.

If you have made the initial size of the shared class cache too small (or too large),

there are two ways to change it without changing the system initialization

parameter:

1. When the status of the shared class cache is STARTED, you can use the

CEMT PERFORM CLASSCACHE RELOAD command (or the equivalent EXEC

CICS command) to create a new shared class cache. The RELOAD option does

not work if the shared class cache has not been started. Specify the size for the

new shared class cache by using the CACHESIZE option on the command.

This causes the least disruption to worker JVMs that are using the shared class

cache.

2. When the status of the shared class cache is STOPPED (either because it has

not yet been started on this CICS execution, or because you have stopped it

manually), you can use the CEMT PERFORM CLASSCACHE START command

(or the equivalent EXEC CICS command) to start the shared class cache.

Specify the size for the new shared class cache by using the CACHESIZE

option on the command. If you do not want the shared class cache to remain

active, you can then shut it down again (see “Terminating the shared class

cache” on page 116).

When you specify a new size for the shared class cache while CICS is running,

subsequent CICS restarts use the new value, unless the system is INITIAL or

COLD started, or the JVMCCSIZE system initialization parameter is specified as an

override at startup. In these cases, the value from the JVMCCSIZE system

initialization parameter is used.

Updating classes or JAR files in the shared class cache

The shared class cache contains:

v The IBM-supplied middleware that you need to run enterprise beans and Java

applications, and any other middleware classes that you have specified (on the

trusted middleware class path).

v Any application classes that are loaded by shared application class loaders,

including classes on the shareable application class path, and classes that are

loaded from a DJAR.

“The structure of a JVM” on page 64 has more details about these classes.

If any of these classes or JAR files change, you need to update them in the shared

class cache, because they are not automatically reloaded. This does not apply to

classes loaded by the nonshareable class loader, that is, classes on the standard

class path specified by the CLASSPATH option in the JVM profile, because they are

loaded into the individual worker JVMs.

Chapter 11. Using JVMs 113

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|
|
|

|
|
|

|

|
|
|
|
|

If you need to update any of the classes or JAR files in the shared class cache, first

update the classes or files on your system. Next, phase out the old shared class

cache and create a new shared class cache. The new shared class cache will

contain the new classes or JAR files that you have placed on your system.

You can phase out the old shared class cache using one of three commands,

depending on how you want the new shared class cache to be introduced. Once

you have entered one of these commands, either CICS will create a new shared

class automatically, or you will need to create a new shared class cache manually.

The three commands that you can use are listed here, with a description of what

happens when you use each command, and what you need to do next. Read the

list to identify the command that is most appropriate for your situation. Table 6 on

page 116, following the list, summarizes when you should use each command.

The commands you can use to update classes or JAR files in the shared class

cache are:

v CEMT PERFORM CLASSCACHE RELOAD (or the equivalent EXEC CICS

command).

This command creates a new shared class cache using the new classes or

JARs. You can only use this command when the status of the shared class

cache is STARTED. When you reload the shared class cache, worker JVMs, both

those that are already allocated to tasks and those that are allocated to tasks

after you issue the command, continue to use the existing shared class cache

until the new shared class cache is ready. When the new shared class cache is

ready, subsequent requests for worker JVMs are given a worker JVM that uses

the new cache. These new worker JVMs are started as they are requested by

applications, and they replace the worker JVMs that are using the old shared

class cache. The worker JVMs that are using the old shared class cache are

allowed to finish running their current Java programs, and then they are

terminated. The old shared class cache is deleted when all the worker JVMs that

are dependent on it have been terminated.

CEMT PERFORM CLASSCACHE RELOAD is the least disruptive of the

commands listed here, but it does mean that the old versions of the class or JAR

files continue to be used until the process is complete. CEMT PERFORM

CLASSCACHE RELOAD has no effect on standalone JVMs that are not sharing

the class cache.

When you have entered CEMT PERFORM CLASSCACHE RELOAD, you do not

need to take any further action, because CICS automatically creates the new

shared class cache as a result of the command.

v CEMT PERFORM CLASSCACHE PHASEOUT, PURGE or FORCEPURGE (or

the equivalent EXEC CICS command).

This command terminates all the worker JVMs that are dependent on the shared

class cache, and then deletes the shared class cache itself. You can choose to

purge or forcepurge the worker JVMs, or allow them to finish running their

current Java programs before they are deleted. New JVMs that start up after you

issue the command cannot use the shared class cache that is being terminated.

This command has no effect on standalone JVMs that are not sharing the class

cache.

When you have entered CEMT PERFORM CLASSCACHE PHASEOUT, PURGE

or FORCEPURGE:

– If autostart is enabled, as soon as a new JVM requests the use of the shared

class cache, a new shared class cache is started, and this new shared class

cache contains the new versions of the classes or JAR files. There will be a

114 Java Applications in CICS

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|

slight delay while the new shared class cache is initialized, during which

requests will wait. All subsequent JVMs that require the shared class cache

will use the new shared class cache.

– If autostart is disabled, you need to take action to ensure that a new shared

class cache is started. You can use the AUTOSTARTST option on the CEMT

PERFORM CLASSCACHE PHASEOUT, PURGE or FORCEPURGE

command (or the equivalent EXEC CICS command) to enable autostart, in

which case a new shared class cache is created as soon as a new JVM

requests the use of the shared class cache. Alternatively, if you want to keep

autostart disabled, you need to start a new shared class cache using the

CEMT PERFORM CLASSCACHE START command (or the equivalent EXEC

CICS command). You can enter this command while the old shared class

cache is being terminated; you do not need to wait for termination to

complete. Enter the command as soon as you can, because while the status

of the shared class cache is STOPPED, requests to run a Java application in

a JVM whose profile requires the use of the shared class cache (that is,

requests for worker JVMs) will fail. After you enter the command, making the

status of the shared class cache STARTING, the requests will wait. The new

shared class cache that you start (whether manually or by enabling autostart)

contains the new versions of the classes or JAR files.

After the new shared class cache starts, the old shared class cache remains in

the system until all the worker JVMs that are dependent on it have been

terminated, and then it is deleted. You can use the CEMT INQUIRE

CLASSCACHE command (or the equivalent EXEC CICS command) to report on

any old shared class caches in your system, and the number of JVMs that are

dependent on them.

v CEMT SET JVMPOOL PHASEOUT, PURGE or FORCEPURGE (or the

equivalent EXEC CICS command).

This command terminates all the JVMs in the JVM pool, both those sharing the

class cache and those running independently as standalone JVMs, and it

terminates the shared class cache. You can choose to purge or forcepurge the

JVMs, or allow them to finish running their current Java programs before they are

deleted.

When you have entered CEMT SET JVMPOOL PHASEOUT, PURGE or

FORCEPURGE (or the equivalent EXEC CICS command):

– For standalone JVMs that do not use the shared class cache, CICS will start

these automatically as they are needed. New standalone JVMs that start up

after you have issued the command will use the new versions of the classes

or JAR files. They can start up right away, and do not need to wait until all the

JVMs in the pool have been terminated.

– For worker JVMs that use the shared class cache:

- If autostart is enabled, the result is the same as with the CEMT PERFORM

CLASSCACHE PHASEOUT, PURGE or FORCEPURGE command. A new

shared class cache is started as soon as a new JVM requests it.

- If autostart is disabled, you need to start a new shared class cache using

the CEMT PERFORM CLASSCACHE START command (or the equivalent

EXEC CICS command). You can enter this command while the old shared

class cache is being terminated; you do not need to wait for termination to

complete. When autostart is disabled, and the status of the shared class

cache is STOPPED (that is, after you have entered the CEMT SET

JVMPOOL PHASEOUT, PURGE or FORCEPURGE command), requests to

run a Java application in a JVM whose profile requires the use of the

shared class cache (that is, requests for worker JVMs) will fail. After you

Chapter 11. Using JVMs 115

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|

enter the CEMT PERFORM CLASSCACHE START command, making the

status of the shared class cache STARTING, the requests will wait rather

than fail. To avoid the possible failure of requests for JVMs, if you are

planning to restart the shared class cache, it is advisable to use the CEMT

SET CLASSCACHE AUTOSTARTST command (or the equivalent EXEC

CICS command) to enable autostart before using the CEMT SET

JVMPOOL PHASEOUT, PURGE or FORCEPURGE command. This

ensures that a new shared class cache is started as soon as it is needed.

As with the CEMT PERFORM CLASSCACHE PHASEOUT, PURGE or

FORCEPURGE command, the old shared class cache remains in the system

until all the worker JVMs that are dependent on it have been terminated, and

then it is deleted.

Table 6 summarizes when you should use each command to update classes or JAR

files in the shared class cache.

 Table 6. Updating classes or JARs in the shared class cache

Situation Suitable command

v You want to allow new JVMs requiring the

shared class cache to use the old classes

or JARs until the new shared class cache

is ready.

v You have no standalone JVMs, or you do

not want to update this type of JVM.

CEMT PERFORM CLASSCACHE RELOAD

(or the equivalent EXEC CICS command)

v You want to ensure that all new JVMs

requiring the shared class cache from now

on must wait until the new shared class

cache is ready, and not use the old

classes or JARs.

v You have no standalone JVMs, or you do

not want to update this type of JVM.

CEMT PERFORM CLASSCACHE

PHASEOUT, PURGE or FORCEPURGE (or

the equivalent EXEC CICS command), using

the AUTOSTARTST option to enable

autostart if it is not already enabled

v You want to update the classes or JARs in

standalone JVMs, as well as in the shared

class cache.

CEMT SET JVMPOOL PHASEOUT, PURGE

or FORCEPURGE (or the equivalent EXEC

CICS command), followed as soon as

possible by CEMT PERFORM

CLASSCACHE START (unless autostart is

enabled, in which case you do not need to

use CEMT PERFORM CLASSCACHE

START)

You can use the CEMT INQUIRE CLASSCACHE command (or the equivalent

EXEC CICS command) to report on any old shared class caches in your system

(OLDCACHES), and the number of JVMs that are dependent on them

(PHASINGOUT). If you want to check the status of the JVMs themselves, including

standalone JVMs, you can use the CEMT INQUIRE JVM command (or the

equivalent EXEC CICS command) to report on all the JVMs in the JVM pool,

including those that are being phased out. (The INQUIRE JVM command does not

find the master JVM that initializes the shared class cache. It only finds worker

JVMs and standalone JVMs.)

Terminating the shared class cache

If you want to terminate the shared class cache without restarting it, use either of

the following two commands:

116 Java Applications in CICS

|
|
|
|
|
|
|
|

|
|
|
|

|
|

||

||

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|

v CEMT PERFORM CLASSCACHE PHASEOUT, PURGE or FORCEPURGE (or

the equivalent EXEC CICS command). This command terminates the shared

class cache and any worker JVMs that are dependent on it. If the shared class

cache is not restarted (either by a command or by the autostart feature), JVMs

that need to use the shared class cache cannot run. JVMs that are not using the

shared class cache are not affected by this command.

v CEMT SET JVMPOOL PHASEOUT, PURGE or FORCEPURGE (or the

equivalent EXEC CICS command). This command terminates all the JVMs in the

JVM pool, both those sharing the class cache and those running independently

as standalone JVMs, and terminates the shared class cache. Standalone JVMs

can restart as needed, but if the shared class cache is not restarted (either by a

command or by the autostart feature), JVMs that need to use the shared class

cache cannot run.

With both of these commands, you can choose to purge or forcepurge the JVMs, or

allow them to finish running their current Java programs before they are deleted.

When you enter these commands, if autostart is enabled for the shared class

cache, a new shared class cache is created as soon as a JVM requests its use. If

you want to prevent this—that is, you want to terminate the shared class cache

without restarting it—then you need to disable autostart. You can disable autostart

in three ways:

1. When you are entering a CEMT PERFORM CLASSCACHE PHASEOUT,

PURGE or FORCEPURGE command (or the equivalent EXEC CICS command)

to terminate the shared class cache, use the AUTOSTARTST option to disable

autostart. (This option is not available if you are using the CEMT SET

JVMPOOL PHASEOUT, PURGE or FORCEPURGE command.)

2. Before you enter a command to terminate the shared class cache, use the

CEMT SET CLASSCACHE AUTOSTARTST command (or the equivalent EXEC

CICS command) to disable autostart.

3. To disable autostart for the next CICS execution, set the JVMCCSTART system

initialization parameter to NO.

Remember that if a Java program needs to run in a JVM that uses the shared class

cache, and the shared class cache has been terminated and not restarted, and

autostart is disabled, then the program cannot run.

You can use the CEMT INQUIRE CLASSCACHE command (or the equivalent

EXEC CICS command) to find out the current status of autostart for the shared

class cache. When you change the autostart status of the shared class cache while

CICS is running, subsequent CICS restarts use the most recent setting that you

made using the CEMT SET CLASSCACHE command or the CEMT PERFORM

CLASSCACHE command (or the equivalent EXEC CICS commands), unless the

system is INITIAL or COLD started, or the JVMCCSTART system initialization

parameter is specified as an override at startup. In these cases, the setting from the

system initialization parameter is used.

If you do not want to restart the shared class cache, and the worker JVMs that are

dependent on it remain active for too long, you can repeat the CEMT PERFORM

CLASSCACHE PURGE or FORCEPURGE command, or the CEMT SET JVMPOOL

PURGE or FORCEPURGE command (or the equivalent EXEC CICS commands),

to attempt to purge the tasks that are using the JVMs. You should only repeat these

commands if autostart for the shared class cache is disabled. The commands

operate on both the most recent shared class cache, and any old shared class

caches in the system that still have JVMs dependent on them. If autostart is

Chapter 11. Using JVMs 117

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

enabled, and you repeat the command to terminate the shared class cache, the

command could operate on the new shared class cache that has been started by

the autostart facility, and terminate it.

Monitoring the shared class cache

Messages from the master JVM that initializes the shared class cache are written to

the HFS file specified by the CLASSCACHE_MSGLOG option in the JVM profile for

the master JVM. The default name for this file is dfhjvmccmsg.log.

To report on the status of the shared class cache, use the CEMT INQUIRE

CLASSCACHE command (or the equivalent EXEC CICS command). The shared

class cache can be in one of four states:

STARTING

The shared class cache is being initialized. If autostart is enabled, the shared

class cache is starting either because CICS received a request to run a Java

application in a JVM whose profile requires the use of the shared class cache,

or because an explicit CEMT PERFORM CLASSCACHE START command (or

the equivalent EXEC CICS command) was issued. If autostart is disabled, the

shared class cache is starting because an explicit CEMT PERFORM

CLASSCACHE START command (or the equivalent EXEC CICS command)

was issued. If CICS receives requests during this period for worker JVMs that

require the use of the shared class cache, the requests wait until the startup

process is complete and the shared class cache is ready. If initialization of the

shared class cache is unsuccessful, any waiting requests for worker JVMs fail.

STARTED

The shared class cache is ready, and it can be used by worker JVMs.

RELOADING

A CEMT PERFORM CLASSCACHE RELOAD command (or the equivalent

EXEC CICS command) has been issued, and a new shared class cache is

being loaded to replace the existing shared class cache. Worker JVMs, both

those that were already allocated to tasks and those that were allocated to

tasks after the command was issued, continue to use the existing shared class

cache until the new shared class cache is ready.

STOPPED

The shared class cache has either not been initialized on this CICS execution,

or it has been stopped by a CEMT PERFORM CLASSCACHE PHASEOUT,

PURGE or FORCEPURGE or CEMT SET JVMPOOL PHASEOUT, PURGE or

FORCEPURGE command (or the equivalent EXEC CICS commands). If

autostart is disabled, requests to run a Java application in a JVM whose profile

requires the use of the shared class cache (that is, requests for worker JVMs)

will fail. If autostart is enabled, a new shared class cache will be initialized as

soon as CICS receives a request to run a Java application in a JVM whose

profile requires the use of the shared class cache.

The CEMT INQUIRE CLASSCACHE command (or the equivalent EXEC CICS

command) also tells you:

v The status of autostart for the shared class cache (AUTOSTARTST).

v The size of the shared class cache (CACHESIZE) and the amount of free space

in it (CACHEFREE).

v The date and time that the current shared class cache was started (STARTTIME

for the EXEC CICS command, or DATESTARTED and TIMESTARTED for the

CEMT command).

118 Java Applications in CICS

|
|
|

|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|
|
|

v The JVM profile for the master JVM that initializes the shared class cache

(PROFILE).

v The level of reusability for the master JVM, which is inherited by all the worker

JVMs in the CICS region (REUSEST).

v Whether there are any old shared class caches in the region that are waiting for

worker JVMs that are dependent on them to be phased out (OLDCACHES). If

the status of the current shared class cache is STOPPED, then it is included in

the number of old shared class caches.

v The number of worker JVMs that are dependent on an old shared class cache,

and are being phased out (PHASINGOUT).

v The total number of worker JVMs in the region that are dependent on a shared

class cache, old or current (TOTALJVMS).

To report on the status of the JVMs in the JVM pool, use the CEMT INQUIRE JVM

command (or the equivalent EXEC CICS command). This command tells you about

a specified JVM or about each JVM in the pool, indicating the task to which it is

allocated, whether its execution key is USER or CICS, and whether or not it is

using the shared class cache. The INQUIRE JVM command does not find the

master JVM that initializes the shared class cache. It only finds worker JVMs and

standalone JVMs.

Enabling applications to use a JVM

Just as for non-Java applications, CICS requires that you define the resources

needed to run a Java program in a JVM. Also, CICS needs to know where to find

the classes that the application will use.

To enable a standard Java program (one that is not a CORBA stateless object or

enterprise bean) to use a JVM, you need to:

1. Select, or create, an appropriate JVM profile for each Java program to use.

“Choosing a JVM profile and JVM properties file” on page 96 summarizes the

considerations you need to take into account, and the changes that you might

want to make to the JVM profile.

2. Check the programming considerations that apply to each of the possible levels

of reusability for a JVM: resettable JVMs, continuous JVMs, and single-use

JVMs. Ensure that your application design takes these into account, and that

you have carried out appropriate testing. “Programming for different types of

JVM” on page 120 explains the programming considerations.

3. Set the appropriate Java attributes on the PROGRAM resource definition for the

Java program. These attributes specify that the program needs a JVM, what the

JVM profile and execution key for that JVM must be, and what the main class in

the program is.“Setting up a PROGRAM resource definition for a Java program

to run in a JVM” on page 126 tells you how to do this.

4. Add the classes that the application uses to the class paths for the JVM, which

are set by using options in the JVM profile and JVM properties file for the JVM.

“Adding application classes to the class paths for a JVM” on page 128 tells you

how to do this.

When you have set up a PROGRAM resource definition for your Java program, and

added the application classes to a class path, the Java program is ready to run.

Remember that if the JVM profile for the JVM specifies the use of the shared class

cache (CLASSCACHE=YES), then for the Java program to run, the shared class

cache must be started, or autostart must be enabled so that the shared class cache

Chapter 11. Using JVMs 119

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

can be started when the application requests it. “Starting the shared class cache”

on page 111 tells you how to start the shared class cache or enable autostart.

CORBA stateless objects and enterprise beans do not have a PROGRAM

resource definition as such. The PROGRAM resource definition that is relevant to

CORBA stateless objects and enterprise beans is that for the request processor

program. To enable these applications to use a JVM, you need to:

1. Identify the JVM profile that is used for the request processor program that will

handle the CORBA stateless object or enterprise bean. This is specified on the

PROGRAM resource definition for the request processor program. The default

request processor program, which is named by the default CIRP transaction on

REQUESTMODEL definitions, is DFJIIRP. The supplied PROGRAM resource

definition for DFJIIRP specifies the JVM profile DFHJVMCD. If you set up your

own request processor program, you can specify a different JVM profile in the

resource definition for that program. You do not need to set up any further

PROGRAM resource definitions or select any JVM profiles for the individual

CORBA stateless objects and enterprise beans. They all use the JVM profile

that is specified for the request processor program that handles them.

Chapter 14, “Configuring CICS for IIOP,” on page 167 explains how to configure

CICS as a CORBA participant, and Chapter 17, “Setting up an EJB server,” on

page 229 explains how to set up a CICS EJB server and how to deploy

enterprise beans. Both these procedures include setting up a suitable request

processor program.

2. For CORBA stateless objects only, add the JAR file for the application to the

shareable application class path, by using the

ibm.jvm.shareable.application.class.path system property that will be used

by the JVM for the request processor program. If the application uses any

classes, such as classes for utilities, that are not included in its JAR file, these

classes also need to be added to the shareable application class path. “Adding

application classes to the class paths for a JVM” on page 128 tells you how to

do this.

3. For enterprise beans, you do not need to add the deployed JAR files (DJARs)

for your enterprise beans to the class path. CICS manages the loading of the

classes included in these files by means of the DJAR definitions. However, if

your enterprise beans use any classes, such as classes for utilities, that are not

included in the deployed JAR file, you do need to include these classes on the

shareable application class path that will be used by the JVM for the request

processor program, as explained in “Adding application classes to the class

paths for a JVM” on page 128.

Programming for different types of JVM

The level of reusability for a JVM is controlled by the REUSE option in the JVM

profile for the JVM. When developing Java applications, you need to bear in mind

the type of JVM in which the application is intended to run.

The levels of reusability for a JVM are:

v Continuous (option REUSE=YES)

v Resettable (option REUSE=RESET)

v Single-use (option REUSE=NO)

“How JVMs are reused” on page 85 explains the three levels of reusability, the

situations for which each level of reusability is appropriate, and the relative

performance of each level of reusability.

120 Java Applications in CICS

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

|

|

|

|

|
|
|

Persistent Reusable Java Virtual Machine User’s Guide, SC34-6201, has more

detailed information about developing Java applications to run in a JVM.

Programming considerations for continuous JVMs

When you are developing Java applications to run in a continuous JVM, you can

create persistent items that might be of use to future executions of the same

application in the same JVM, but you also need to ensure that programs do not

change the state of the JVM in undesirable ways, or leave any unwanted state in

the JVM.

Protecting the state of a continuous JVM

The continuous JVM does not isolate invocations of Java programs from changes

made to the JVM by previous invocations of programs in the same JVM. User

application classes, as well as middleware classes, that run in a continuous JVM

are able to change the state of the JVM in ways that might affect subsequent

program invocations. For example, a program might reset the default time-zone (if

not prohibited by a security manager), and do calculations based on this time-zone.

Subsequent invocations of the program would use the new default time-zone, which

might not be appropriate. In a resettable JVM, such actions would be considered

unresettable actions, and cause the JVM to be destroyed.

Unresettable actions are not recorded in a continuous JVM. To help eliminate

unresettable actions where they are not desired, during the development process,

you can test the program in a resettable JVM (with the option REUSE=RESET).

Resettable JVMs record unresettable actions, and you can use this information to

help you re-design the application if necessary. “Programming considerations for

resettable JVMs” on page 123 tells you how to make a JVM record unresettable

actions. When you know that the program does not change the state of the JVM in

undesirable ways, you can move to using it in a continuous JVM.

Static state in a continuous JVM

Invocations of Java programs in a continuous JVM are able to pass on state to

subsequent invocations of programs in the same JVM. You can use this to your

advantage in designing your Java applications if you want information to persist

from one program invocation to the next. Because static state and object instances

referenced through static state are not reset between JVM reuses in a continuous

JVM, it is permissible for applications to create persistent items that might be of use

to future executions of the same application in the same JVM.

Imagine an operation that reads DB2 information in order to construct a complex

data structure; this might be an expensive operation that should not be repeated

more times than absolutely necessary. With a continuous JVM, the complex data

structure can be stored in application static and be accessible to later executions of

the application in the same JVM, thus avoiding unnecessary initialization. (If objects

are anchored in static, that is, in the static class fields, then they are never

candidates for garbage collection.) This is also possible with a resettable JVM, but

would require the development of middleware code, which is a step up in

complexity from developing application code.

If you design an application in this way, remember that there is no guarantee that

subsequent executions of an application (or even executions of a different Java

program within the same transaction), will be assigned a JVM containing the items

that were created by the first execution of the application. The subsequent

executions of the application might be assigned a newly created JVM, or a JVM

Chapter 11. Using JVMs 121

|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

that has been re-initialized following a mismatch or a steal, or a JVM that has been

used by a different application which cleared the JVM’s storage heaps. Your

application should not rely on the presence of the persistent items that you create in

the JVM; it should check for their presence in order to avoid unnecessary

initialization, but it should be prepared to initialize them if they are not found in the

present JVM.

However, you must take care when designing and coding your applications that you

do not leave any unwanted state in a continuous JVM. Because the static storage is

not reinitialized for each invocation of the program in a continuous JVM, your

program must reinitialize its own static storage, if it depends on the state of a

changeable class field. Static variables in a continuous JVM can exist through a

number of CICS tasks, and their value might not be predictable. This is true for

static variables in all classes, both application and system classes, and includes

classes which might affect the application, but are not used explicitly (including

those used in static initializers). Try to identify and eliminate any changeable class

fields and static initializers that have not been included deliberately as part of the

application’s design. Consider the following guidelines:

v Define a class field as private and final whenever possible. Be aware that a

native method can write to a final class field, and a non-private method can

obtain the object referenced by the class field and can change the state of the

object or array.

v Be aware of system-loaded classes that use changeable class fields.

Further programming tips for a continuous JVM:

Applying a Java 2 security policy

If you want to monitor and police any potentially unsafe actions in a

continuous JVM, consider enabling the Java 2 security policy mechanism.

By default, CICS does not enforce a Java 2 security policy. When you

enable the security manager for a JVM, you can specify security policy files

to give applications permission only for actions which you consider safe.

CICS provides a Java 2 security policy file, dfjejbpl.policy, which can be

used to restrict the permitted operations for a Java application in CICS to

only those operations permitted for enterprise beans. You may choose to

use this policy file, and to provide further policies of your own, if wanted.

“Protecting Java applications in CICS by using the Java 2 security policy

mechanism” on page 333 has more information about applying a security

policy.

Accessing DB2

After a Java application running in a continuous JVM has accessed DB2, it

is important that it closes the DB2 connection. This is because subsequent

executions of the same application in the continuous JVM will try to open a

new DB2 connection. This fails if a previous connection has not been

closed.

Middleware

If you are writing middleware to run in a continuous JVM, note that a

continuous JVM does not invoke the ibmJvmTidyUp method to request the

middleware classes to perform cleanup. The middleware classes must

perform any cleanup that is required without being prompted by this

request. (The CICS-supplied middleware does perform cleanup without a

request from the JVM.) Persistent Reusable Java Virtual Machine User’s

Guide, SC34-6201, explains how middleware should be written.

122 Java Applications in CICS

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

Programming considerations for resettable JVMs

When you are developing Java applications to run in a resettable JVM, you need to

ensure that the programs do not perform unresettable actions or leave cross-heap

references in the JVM. In a resettable JVM, if an unresettable event (caused by an

unresettable action or by a cross-heap reference still in scope) is recorded, the JVM

is destroyed and cannot be reused, so CICS incurs the CPU cost of initializing a

new JVM.

Unresettable actions are listed in the document Persistent Reusable Java Virtual

Machine User’s Guide, SC34-6201. You should log the unresettable actions and

cross-heap references during the development process in order to identify and

eliminate them.

To log unresettable actions and cross-heap references during testing of your Java

programs, include the system properties listed below in the JVM properties file for

the JVM that you are using. There is also one option to be included in the JVM

profile. The CICS System Definition Guide has more detailed information about

each of these system properties. In particular, note that when you include some of

these system properties in the JVM properties file with any value, the function is

enabled. To disable the function, you need to comment out or remove the system

property; there is no value you can specify for the system property that disables the

function.

ibm.jvm.events.output={event.log | path | stderr | stdout}

This system property enables event logging in the JVM, and it must be

specified in order to enable the other system properties related to event logging.

The CICS-supplied sample JVM properties file dfjjvmpr.props specifies the file

event.log, which is created in the directory defined by the WORK_DIR option in

the JVM profile. You can also store the text records describing the events in a

HFS file of your choice, or in the stderr or stdout file for the JVM. Bear in mind

that the output from multiple JVMs will be interleaved in the file event.log, or in

a HFS file that you have chosen, or in the stderr or stdout files if only one file is

used. If you are only obtaining output from a single JVM, you can specify a

single file for this system property. If you are obtaining output from multiple

JVMs, you should specify stderr or stdout, and also ensure that the -generate

option is used for the STDERR or STDOUT option in the JVM profile, to

generate a separate output file for each JVM. Alternatively, if you specify stderr

or stdout, you can use the USEROUTPUTCLASS option in the JVM profile to

redirect the output to another destination of your choice and add headers to it

(see “Redirecting JVM output” on page 135).

ibm.jvm.unresettable.events.level={max | min}

This system property specifically enables the logging of unresettable events

(caused by an unresettable action or by a cross-heap reference still in scope),

and sets the level of logging required. Specifying min produces a list of reason

codes that define the unresettable events found, and specifying max produces

the reason codes and also a stack trace where appropriate.

ibm.jvm.crossheap.events=on

This system property specifically enables the logging of cross-heap references.

Cross-heap references are references between the middleware heap and the

transient heap in the JVM. They are logged to the event output destination at

the time that each reference is created. The log entry includes a full stack trace

to identify the line of code that created the cross-heap reference.

 Most of the cross-heap references that are logged will be removed before the

JVM is reset, through the normal actions of the CICS and JVM code, and

through any actions that your application takes for this purpose. However, if any

Chapter 11. Using JVMs 123

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

cross-heap references are not removed before the JVM is reset, they cause the

JVM to perform a trace-for-unresettability check. Any references that are found

to be in live objects trigger unresettable events, which cause the JVM to be

marked as unresettable and destroyed. Any references that are found to be in

unreferenced middleware heap objects (garbage) are reported as reset trace

events, which do not cause the JVM to be destroyed, but have still wasted

processor time by causing the trace-for-unresettability check. You should

therefore ensure that all cross-heap references created by your applications are

removed from the JVM before it is reset.

ibm.jvm.resettrace.events=on

This system property specifically enables the logging of reset trace events.

Reset trace events are caused by cross-heap references that are still present in

out-of-scope JVM objects (garbage) in the JVM at reset time. (If the cross-heap

reference is still in scope, it causes an unresettable event.) Reset trace events

do not cause the JVM to be marked as unresettable and destroyed, but you

should still eliminate the cross-heap references that caused them, because the

trace-for-unresettability check that is required for these cross-heap references

reduces the performance of the JVM.

java.compiler=NONE

The activities of the Java just-in-time (JIT) compiler can interfere with the

logging of unresettable events, reset trace events and cross-heap events.

During the development process, specify the system property

java.compiler=NONE (the word NONE must be in upper case) in the JVM

properties file to turn off the JIT compiler for the JVM. Remember to turn the

JIT compiler back on when you have finished investigating unresettable events,

reset trace events and cross-heap events in your application.

Use the information from the output in your event log to eliminate the causes of

unresettable events and reset trace events from your Java programs. The following

example shows an unresettable event in an event log:

[EVENT 0xa]

TIME=30/08/2003 at 15:14:33.107

THREAD=EXAMPLE.TASK100.SAMP (0:22c8abf0)

CLASS=UnresettableEvent

DESCRIPTION=Attempt to load a native library in untrusted code

STACK=

 JAVA STACK TRACE

[END EVENT]

In this example, the reason code for the unresettable event is 0xa. The meaning of

the reason codes for unresettable events can be found in Appendix A of the

document Persistent Reusable Java Virtual Machine User’s Guide, SC34-6201.

Where an unresettable event is caused by an unresettable action, rewrite your

application code to remove the unresettable action. Your Java programs should not

perform unresettable actions when they are used in a production environment. If a

program absolutely has to perform unresettable actions, you should run it in a

single-use JVM instead (see “Single-use JVMs (REUSE=NO)” on page 88).

Where an unresettable event or a reset trace event is caused by a cross-heap

reference, you can use the memory location listed for the event to identify the

cross-heap reference recorded in the event log which is responsible for triggering

the event. You can then use the stack trace associated with the cross-heap

reference to help you to fix the problem. The document Persistent Reusable Java

Virtual Machine User’s Guide, SC34-6201, has more information about debugging

reset trace events. You might have to perform compensatory actions in application

124 Java Applications in CICS

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

code to cause a cross-heap reference to be removed, which could include closing

files or streams, emptying collections, or other kinds of clean-up activity. If you

cannot remove the cross-heap reference in application code, consider contacting

your IBM support representative for further advice.

Invocations of Java programs that run in a resettable JVM are completely isolated

from subsequent invocations of programs in the same JVM. This means that the

programs cannot pass on state to subsequent invocations.

Programming considerations for single-use JVMs

New Java applications should not be developed in such a way that they can only

run in a single-use JVM. You should only use this type of JVM for Java programs

that must perform an unresettable action, and cannot at present be redesigned to

eliminate this action so that they could run in a continuous JVM or a resettable

JVM.

To improve performance, you should redesign these Java programs as soon as you

can. Run the programs in a development environment, using a resettable JVM (with

the option REUSE=RESET in the JVM profile) with unresettable event logging

enabled, to identify the unresettable actions, and use this information to help you

redesign the program. The programs can then be run in a continuous JVM or a

resettable JVM.

You cannot have more than one invocation of a Java program in a single-use JVM,

so these programs cannot pass on state to subsequent invocations of the same

program.

The single-use JVM is the only type of JVM that should be configured for debug

using the Java Platform Debugger Architecture (JPDA). A JVM that has been run in

debug mode is not a candidate for reuse. “Debugging an application that is running

in a CICS JVM” on page 142 has more information about this.

Threads and sockets in Java applications for CICS

For a Java application running in a JVM in a CICS region, threads and sockets

should be used with caution. These Java features could affect the isolation of CICS

tasks, and interfere with JVM phaseout.

The main thread under which a JVM starts is called the Initial Process Thread

(IPT). Application code that uses the JCICS API must execute under the IPT. CICS

ensures that the public static main method in any Java program (from the Java

class specified by the JVMCLASS attribute in the PROGRAM resource definition)

executes under the IPT, and this is also the case for enterprise beans and stateless

CORBA applications.

It is possible for application code running in a JVM to start a new thread, or call a

library which starts a thread on its behalf. Threads started by user code cannot

make use of CICS services; if you attempt to do this, the JVM abends with an 0501

user abend code. An application could start a thread and use it for purposes other

than interacting with CICS. However, the use of threads in a Java application for

CICS can have undesirable consequences, depending on the type of JVM.

v If an application running in a resettable JVM starts threads, the CICS task does

not complete until all the threads that were started by user code, as well as the

IPT, have finished executing. When all active threads have been stopped, control

is returned to CICS. Starting a thread is an unresettable action, so the JVM is

destroyed when the Java program has finished using it. Although this maintains

isolation, it has a significant impact on performance.

Chapter 11. Using JVMs 125

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

#
#
#
#

#
#
#
#
#
#

#
#
#
#
#
#

#
#
#
#
#
#

v If an application running in a continuous JVM starts threads, the CICS task

completes when the IPT has finished its activity, but other threads can continue

executing after the IPT has returned control to CICS. The threads might carry on

executing while the JVM is not assigned to a CICS task, and might even be

running when a JVM is assigned to a new task. This damages isolation for a

CICS JVM, and can also cause problems when CICS attempts to phase out the

JVM, because the phaseout process might be blocked waiting for the user

threads to end. For these reasons, the use of threads in a continuous JVM

should be treated with extreme caution. In general, it is recommended that

applications running in a continuous JVM do not start any threads at all. If you

really need to start threads, the application needs to ensure that they are not

allowed to execute beyond the lifetime of the CICS task which starts them.

Threads started by application code might be used to manage sockets created

using classes in the java.net package. Sockets created using the java.net classes

use the JVM’s native sockets capabilities, rather than the CICS sockets domain.

These sockets are not managed by CICS, and the user is responsible for handling

and managing them. CICS is not capable of transactionally managing or monitoring

any communications performed using these sockets.

v In a resettable JVM, the CICS task cannot complete until all activity has ended

for sockets created using the java.net classes, and the sockets are

automatically closed when the task completes. Creating and using sockets are

not unresettable actions, but starting a thread to manage a socket is an

unresettable action.

v In a continuous JVM, when the CICS task ends, threads started by application

code could still be listening on the sockets in order to process new workload, and

the sockets are not automatically closed. In this situation, the threads could

continue executing beyond the lifetime of the CICS task, and interfere with

isolation or with JVM phaseout.

You could consider using the Java 2 security policy mechanism to prevent

applications from starting threads or from creating sockets using the java.net

classes. A security manager can be used for both resettable and continuous JVMs.

Note that the CICS-supplied enterprise beans policy file, dfjejbpl.policy, does

allow the use of sockets, because this is recommended in the Enterprise

JavaBeans specification. You should only consider removing this permission if you

do not use enterprise beans.

Setting up a PROGRAM resource definition for a Java program to run

in a JVM

When an application makes a request to run a Java program, it can make the

request in various ways: for example, it can make an enterprise bean request, start

a transaction, or link to or call the program by name. “How CICS creates JVMs” on

page 71 explains how CICS locates the PROGRAM resource definition in each

case. That topic also gives fuller information about some of the attributes mentioned

in this topic. Only standard Java programs need their own individual PROGRAM

resource definitions, so if you are setting up CORBA stateless objects or enterprise

beans, skip this section and move on to “Adding application classes to the class

paths for a JVM” on page 128.

The CICS Resource Definition Guide tells you how to set up a PROGRAM resource

definition for a program. The attributes you need to specify on the PROGRAM

resource definition to enable a Java program to run in a JVM are as follows:

126 Java Applications in CICS

#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#

#
#
#
#
#

#
#
#
#
#

#
#
#
#
#
#
#

|

|

|
|
|
|
|
|
|
|
|

|
|
|

EXECKEY

Specify EXECKEY(USER) if you want the program to run in a JVM that

executes in user key. The default for the EXECKEY parameter is USER. Before

CICS Transaction Server for z/OS, Version 2 Release 3, the EXECKEY

parameter was ignored for Java programs, so you might find that in most cases,

the PROGRAM resource definitions for any Java programs that you created for

earlier releases of CICS are still set to the default of EXECKEY(USER).

EXECKEY(USER) is suitable for most Java programs, because it improves

storage protection. However, if the program is part of a transaction that

specifies TASKDATAKEY(CICS), the program needs to run in a JVM in CICS

key, so in this case, specify EXECKEY(CICS). “Execution key (EXECKEY

attribute)” on page 72 explains more about the effects of setting the execution

key.

JVM

Specify YES to state that the program is a Java program that has to run in a

JVM.

JVMCLASS

Specify the name of the main class in the Java program that is to run in the

JVM. If the program has been built as a package (that is, compiled using a

Java package statement), you need to specify the fully qualified name, which is

the Java class name qualified by the package name, with a period (.) used as a

separator. For example, the package example.HelloWorld contains the class

HelloCICSWorld; in this case, the fully qualified class name is

example.HelloWorld.HelloCICSWorld. If the program has not been built as a

package, you only need to specify the class name, with no qualifiers.

 The names are case-sensitive and must be entered with the correct

combination of upper and lower case letters. For example,

com.ibm.cics.iiop.RequestProcessor is the class specified for the CICS IIOP

request processor program, DFJIIRP. The CEDA panels accept mixed case

input for the JVMCLASS field irrespective of your terminal’s UCTRAN setting.

However, this does not apply when values for this field are supplied on the

CEDA command line, or by using another CICS transaction such as CEMT or

CECI. If you need to enter a class name in mixed case when you use CEDA

from the command line or when you use another CICS transaction, ensure that

the terminal you use is correctly configured, with upper case translation

suppressed.

 You can use the CEMT SET PROGRAM JVMCLASS command or the EXEC

CICS SET PROGRAM JVMCLASS command to change the name of the main

class from that specified on the installed PROGRAM resource definition. (If you

use an EXEC CICS command to set the JVMCLASS field, the value is always

accepted in mixed case.) If the program uses a single-use JVM (that is, with a

JVM profile that specifies the option REUSE=NO), you can also use the

user-replaceable program DFHJVMAT to override the JVMCLASS specified on

the installed PROGRAM resource definition. On the PROGRAM resource

definition, the limit for the JVMCLASS attribute is 255 characters, but you can

use DFHJVMAT to specify a class name longer than 255 characters.

JVMPROFILE

Specify the name (up to eight characters) of the profile that CICS is to use for

the JVM that will run this program. The default is DFHJVMPR. “Setting up JVM

profiles and JVM properties files” on page 94 tells you how to select or create

JVM profiles and their associated JVM properties files.

 As JVM profiles are HFS files, case is important. When you specify the name of

the JVM profile, you must enter it using the same combination of upper and

Chapter 11. Using JVMs 127

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

lower case characters that is present in the HFS file name. As for the

JVMCLASS field, the CEDA panels accept mixed case input for the

JVMPROFILE field irrespective of your terminal’s UCTRAN setting. However,

this does not apply when values for this field are supplied on the CEDA

command line, or by using another CICS transaction such as CEMT or CECI. If

you need to enter the name of a JVM profile in mixed case when you use

CEDA from the command line or when you use another CICS transaction,

ensure that the terminal you use is correctly configured, with upper case

translation suppressed.

 You can use the CEMT SET PROGRAM JVMPROFILE command or the EXEC

CICS SET PROGRAM JVMPROFILE command to change the JVM profile from

that specified on the installed PROGRAM resource definition. (If you use an

EXEC CICS command to set the JVMPROFILE field, the value is always

accepted in mixed case.) This enables you to change the JVM profile that a

program uses during a CICS run, without having to re-install the PROGRAM

resource definition. Any instances of the program that are currently running in a

JVM with the old JVM profile are unaffected, and are allowed to finish running

their current Java program. New instances of the program will use a JVM with

the new JVM profile that you have specified.

Adding application classes to the class paths for a JVM

The class paths for a JVM are defined by options in the JVM profile, and in the

JVM properties file that the JVM profile references. (“Setting up JVM profiles and

JVM properties files” on page 94 tells you how to select or create JVM profiles and

their associated JVM properties files.) For each Java program, when you have

specified the name of the JVM profile that CICS is to use for the JVM (on the

JVMPROFILE attribute of the PROGRAM resource definition), you need to locate

the JVM profile and its associated JVM properties file, and add the application

classes for the program to the class paths. You can edit JVM profiles and JVM

properties files in a standard text editor.

If you are setting up CORBA stateless objects and enterprise beans, and you just

need to know how to specify the JAR file or any additional classes on the shareable

application class path, you can skip straight to “Including CORBA stateless objects

and enterprise beans on the shareable application class path” on page 131. If you

are setting up a standard Java application, or if you want to know more about how

the different class paths should be used, carry on reading.

“Classes in a JVM” on page 64 explains the classes that are present in a JVM:

system classes and standard extension classes, middleware classes, and

application classes. That topic also explains the four class paths to which you can

add the classes that your application needs. The class path you choose determines

how the JVM treats the class.

When you add any class to a class path, remember that:

v Your application classes should not perform unresettable actions, that is, actions

that modify the state of a JVM in such a way that it cannot be properly reset. The

classes can perform these actions, but they cause resettable JVMs to be marked

as unresettable and to be destroyed rather than re-used, and in continuous JVMs

they might have an undesirable effect on subsequent program invocations in the

JVM. “How JVMs are reused” on page 85 explains how to avoid unresettable

actions.

v If you want to add classes to different class paths, they need to be in separate

directories or JAR files. For example, if an application includes some classes that

128 Java Applications in CICS

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|

you want to place in the shared class cache (which need to go on the shareable

application class path), and other classes that you prefer to be placed in the

individual JVMs (which need to go on the standard class path), you should place

each type of class in a separate directory.

v If the JVM for this application is to use the shared class cache (see “The shared

class cache” on page 89), then classes that you add to most of the class paths

must be placed in the class paths in the JVM profile and JVM properties file for

the master JVM that initializes the shared class cache, rather than in the JVM

profile and JVM properties file for the JVM where the application will run. This

applies to middleware classes, shareable application classes, and any items that

you add to the library path. This is because the library path (defined by the

LIBPATH option in the JVM profile), the trusted middleware class path (built from

the CICS_DIRECTORY, TMPREFIX, and TMSUFFIX options in the JVM profile),

and the shareable application class path (defined by the

ibm.jvm.shareable.application.class.path system property in the JVM

properties file), are all ignored for a worker JVM, and are taken instead from the

JVM profile and JVM properties file for the master JVM. Only the standard class

path (specified by the CLASSPATH option in the JVM profile) is taken from the

JVM profile for the JVM itself, rather than from the JVM profile for the master

JVM that initialises the shared class cache.

v The name of the class itself (including the name of the package, if the program

has been built as a package) is not actually specified in the JVM profile or JVM

properties file. The options in the JVM profile or JVM properties file specify the

path to the class—that is, the full path of the HFS directory in which a class

loader will be able to find the class or the package containing the class. The rule

is to stop specifying the path, at the point where you would start specifying the

name of the class in the JVMCLASS attribute in a PROGRAM resource definition

(see “Setting up a PROGRAM resource definition for a Java program to run in a

JVM” on page 126). So if the program has been built as a package, and you

would use the Java class name qualified by the package name (the fully qualified

class name) in the PROGRAM resource definition, do not include the package

name as part of the path. If the program has not been built as a package, and

you would just use the class name in the PROGRAM resource definition, then

the path must specify all the subdirectories, including the subdirectory containing

the class. Where classes or packages have been placed in JAR files (with the

extension .jar), include the name of the JAR file on the class path as if it were

the name of a directory. “Options in JVM profiles” in the CICS System Definition

Guide shows some examples of paths.

v Use a colon as the separator between paths that you specify on a class path.

(This is defined by the path.separator system property for the JVM, which you

can change.) To include line breaks, use a backslash and a blank (\). “Rules for

coding JVM profiles and JVM properties files” in the CICS System Definition

Guide has a full explanation of how to code class paths and other items in a JVM

profile or JVM properties file.

As explained in “Classes in a JVM” on page 64, you should add classes to class

paths as follows:

1. Choose the library path for any native C dynamic link library (DLL) files that

are to be loaded into the JVM by trusted code. This might include the DLL files

needed to use the DB2 JDBC drivers, or any native code associated with a

class that you are using to redirect JVM output (named on the

USEROUTPUTCLASS option in the JVM profile).

To include items on the library path, use the LIBPATH option in the JVM profile

that you have selected for the application (or for worker JVMs, in the profile for

Chapter 11. Using JVMs 129

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

the master JVM that initialises the shared class cache). “Options in JVM

profiles” in the CICS System Definition Guide has more information about this

option.

2. Choose the trusted middleware class path for middleware classes that can be

trusted by the JVM to manage their own state across a JVM-reset. This class

path is normally used for classes for middleware supplied by IBM or by another

vendor, which are not included in the standard JVM setup for CICS. Trusted

middleware classes are permitted to change the JVM environment even if the

JVM is resettable, so for this reason you should not normally place your own

application classes on the trusted middleware class path.

To include classes on the trusted middleware class path, use the TMPREFIX or

TMSUFFIX option in the JVM profile that you have selected for the application

(or for worker JVMs, in the profile for the master JVM that initialises the shared

class cache). Using TMPREFIX places the class at the beginning of the trusted

middleware class path, and using TMSUFFIX places it at the end of the path.

The trusted middleware class path also includes the path specified by the

CICS_DIRECTORY option in the JVM profile, which points to the CICS-supplied

JAR files. “Options in JVM profiles” in the CICS System Definition Guide has

more details about all these options. For CICS, these options are used instead

of the ibm.jvm.trusted.middleware.class.path JVM system property.

3. Choose the shareable application class path for application classes that you

want to be cached. For standalone JVMs, the classes will be cached in the

JVM, kept across JVM reuses, and reinitialized if the JVM is reset. For worker

JVMs, they will be obtained from the shared class cache. Adding application

classes to this class path, rather than to the standard class path, produces the

best performance in a resettable JVM, and it should be your normal choice for

loading application classes in a production environment.

To include classes on the shareable application class path, use the system

property ibm.jvm.shareable.application.class.path, in the JVM properties file

that is referenced by the JVM profile that you have selected for the application

(or for worker JVMs, in the JVM properties file for the master JVM that initialises

the shared class cache). “System properties for JVMs” in the CICS System

Definition Guide has more details about this system property.

4. Choose the standard class path for nonshareable application classes, that is,

application classes that you do not want to be shared by other JVMs or across

JVM resets. Classes on this class path are not placed in the shared class

cache. They are loaded into the JVM. If the JVM is defined as resettable,

classes on this class path are discarded when the JVM is reset, and reloaded

from HFS files each time the JVM is reused. If the JVM is defined as a

continuous JVM, however, nonshareable application classes are kept intact from

one JVM reuse to the next.

You should not normally place application classes on the standard class path

without a good reason for doing so, because it causes a degradation in

performance in a resettable JVM, and for worker JVMs (both resettable and

continuous) it uses more storage than having a single copy of the classes in the

master JVM. You might find it convenient to use this class path during

application development in a non-production environment if your JVMs are

resettable, because it means you do not have to phase out the JVM pool in

order to update class definitions. (If your JVMs are continuous, you still need to

phase out the JVM pool.) Occasionally, you might decide to use this class path

for classes that are used infrequently, if you prefer to incur the performance cost

in a resettable JVM of reloading the class each time it is required, rather than

the storage cost of keeping the class in the JVM or in the shared class cache.

130 Java Applications in CICS

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

To include classes on the standard class path, use the CLASSPATH option in

the JVM profile that you have selected for the application. This class path is

always taken from the profile for the JVM itself, not from the profile for the

master JVM that initialises the shared class cache. “Options in JVM profiles” in

the CICS System Definition Guide has more details about this option. For CICS,

this option is used instead of the java.class.path JVM system property.

Including CORBA stateless objects and enterprise beans on the

shareable application class path

As explained in “Enabling applications to use a JVM” on page 119, for CORBA

stateless objects and enterprise beans, you need to include the following items on

the shareable application class path that will be used for the request processor

program:

v The JAR files for CORBA stateless objects.

v Any classes, such as classes for utilities, that are used by CORBA stateless

objects or enterprise beans, but are not included in the JAR files.

You do not need to include the deployed JAR files (DJARs) for enterprise beans on

the class path.

Specify these items on the shareable application class path by using the

ibm.jvm.shareable.application.class.path system property that will be used by

the JVM for the request processor program. This means that:

v If the JVM for the request processor program is a standalone JVM that does not

use the shared class cache, then use the

ibm.jvm.shareable.application.class.path system property in the JVM

properties file that is referenced by the JVM profile named in the JVMPROFILE

option of the PROGRAM definition for the request processor program. For

example, if your CORBA stateless objects or enterprise beans use the default

request processor program DFJIIRP (which is named by the default CIRP

transaction on REQUESTMODEL definitions), and DFJIIRP is set to use the JVM

profile DFHJVMCD (which is the default JVM profile for CICS-supplied system

programs), then you need to specify the paths to the classes in the JVM

properties file dfjjvmcd.props (which is the JVM properties file referenced by

DFHJVMCD).

v If the JVM used by the request processor program is a worker JVM that uses the

shared class cache, then use the ibm.jvm.shareable.application.class.path

system property in the JVM properties file that is referenced by the JVM profile

for the master JVM that initializes the shared class cache. For example, take the

case where you have created a request processor program that uses the JVM

profile DFHJVMPC (a JVM profile for JVMs that use the shared class cache), so

that your CORBA stateless objects or enterprise beans use the shared class

cache, and your master JVM uses the JVM profile DFHJVMCC (which is the

default JVM profile for a master JVM). In this situation, you need to specify the

paths to the classes in the JVM properties file dfjjvmcc.props, which is the JVM

properties file referenced by DFHJVMCC, instead of in the JVM properties file

dfjjvmpc.props, which is referenced by DFHJVMPC.

When you are adding these items to the shareable application class path,

remember:

v The name of the class itself is not actually specified. The options in a JVM profile

or JVM properties file specify the path to the class—that is, the full path of the

HFS directory in which a class loader will be able to find the class or the

package containing the class. Where classes or packages have been placed in

JAR files (with the extension .jar), this means that you need to include the name

Chapter 11. Using JVMs 131

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

of the JAR file on the class path as if it were the name of a directory. (Remember

that deployed JAR files do not need to be placed on a class path.) If you need to

add any utility classes, see the guidance given earlier in “Adding application

classes to the class paths for a JVM” on page 128.

v Use a colon as the separator between paths that you specify on a class path.

(This is defined by the path.separator system property for the JVM, which you

can change.) To include line breaks, use a backslash and a blank (\). “Rules for

coding JVM profiles and JVM properties files” in the CICS System Definition

Guide has a full explanation of how to code class paths and other items in a JVM

profile or JVM properties file.

Managing your JVMs

CICS performs many of the tasks needed to manage the JVMs in your JVM pool,

including creating new JVMs, reusing free JVMs, and clearing up unrequired

JVMs.“How CICS creates JVMs” on page 71, “How CICS manages JVMs in the

JVM pool” on page 75 and “How CICS allocates JVMs to applications” on page 79

explain how CICS performs these tasks. You can:

v Select an appropriate MAXJVMTCBS limit for your JVM pool, to prevent MVS

storage constraints. “How CICS manages JVMs in the JVM pool” on page 75

explains the issues associated with MAXJVMTCBS, and what happens when an

MVS storage constraint occurs. The CICS Performance Guide tells you how to

work out an appropriate setting for the MAXJVMTCBS system initialization

parameter.

v Monitor your JVM pool, the JVMs in it, and the JVM profiles that they use, and

collect statistics about JVMs and JVM profiles. See “Monitoring JVM activity.”

v Terminate all the JVMs in the JVM pool, or disable the JVM pool so that it cannot

service new requests. See “Terminating or disabling the JVM pool” on page 134.

v Redirect messages from JVM internals and output from Java applications running

in a JVM, and add time stamps and headers to the records. You can create a

merged log file containing the output from multiple JVMs, or a file containing the

output for a single program instance or task. See “Redirecting JVM output” on

page 135.

v Control JVM tracing. See “Controlling tracing for JVMs” on page 140.

v Tune the JVM pool as a whole, and your individual JVMs, to achieve optimum

performance. The CICS Performance Guide tells you how to do this.

Monitoring JVM activity

You can use CICS commands and statistics to monitor:

v The JVM pool.

v The JVMs that CICS has in the JVM pool, and how CICS assigns them to

requests.

v The JVM profiles that CICS is using to create JVMs, and the activity for each

JVM profile.

v The Java programs that run in JVMs.

Monitoring the JVM pool

You can use the CEMT INQUIRE JVMPOOL command (or the equivalent EXEC

CICS command) to find out information about the JVM pool. The command tells you

about:

v The number of JVMs in the pool.

132 Java Applications in CICS

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

|

|
|

|

|

|

|
|

|
|

|

|
|
|
|

|

v The number of those JVMs that have been marked for deletion, but are still being

used by a task.

v Whether the JVM pool is enabled or disabled (that is, whether it can service new

requests or not).

v What trace options apply for the JVMs in the pool (this option is only available on

the EXEC CICS version of the command).

Monitoring JVMs in the JVM pool

You can use the EXEC CICS INQUIRE JVM command or the CEMT INQUIRE JVM

command to identify and report the status of each JVM in the JVM pool. Using the

EXEC CICS INQUIRE JVM command, you can inquire on a specific JVM, or you

can browse through all the JVMs in the JVM pool. Using the CEMT INQUIRE JVM

command, you can list all the JVMs in the JVM pool, or inquire on all JVMs in a

specified state. The commands tell you about:

v The JVM profile and execution key of the JVMs in the pool.

v Which of the JVMs in the pool use the shared class cache.

v The age of each JVM.

v The task to which a JVM is allocated, and the time it has been allocated to the

task.

v JVMs that are being phased out as a result of a CEMT SET JVMPOOL

PHASEOUT, PURGE or FORCEPURGE command, or a CEMT PERFORM

CLASSCACHE PHASEOUT, PURGE or FORCEPURGE command (or the

equivalent EXEC CICS commands).

The INQUIRE JVM command does not find the master JVM that initializes the

shared class cache. It only finds worker JVMs and standalone JVMs.

You can also monitor the activity in the JVM pool using the CICS statistics. Use the

EXEC CICS COLLECT STATISTICS command, or the CEMT PERFORM

STATISTICS command, with the relevant options to collect these statistics. Some

useful statistics are the JVM pool statistics (JVMPOOL option), the TCB Mode

statistics (DISPATCHER option), the JVM profile statistics (JVMPROFILE option),

and the JVM program statistics (JVMPROGRAM option). These statistics can tell

you, among other things:

v How many JVMs of a particular profile, on a particular TCB mode, are in the JVM

pool (from the JVM profile statistics).

v How many requests were made for a JVM of a particular profile, on a particular

TCB mode (from the JVM profile statistics).

v How many times a request for a JVM had to wait because there was no JVM

available with an execution key and profile matching the request (from the TCB

pool statistics for the JVM pool). This includes both requests that were eventually

assigned a suitable JVM, and requests to which CICS decided to assign a

mismatching or stolen JVM, rather than make them wait any longer. This figure

can also include serialization waits, that is, time spent waiting to obtain any

required locks.

v How long these requests spent waiting (from the TCB pool statistics for the JVM

pool).

v How many times a request for a JVM was assigned a JVM that had the wrong

profile or the wrong execution key (from the JVM profile statistics). These

incidents of mismatching and stealing are broken down by JVM profile, so you

can see if a particular profile is causing excess stealing activity.

Chapter 11. Using JVMs 133

|
|

|
|

|
|

|
|
|
|
|
|
|

|

|

|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

Monitoring the use of JVM profiles

You can use the EXEC CICS INQUIRE JVMPROFILE command in browse mode to

find out what JVM profiles have been used in this CICS execution. INQUIRE

JVMPROFILE only finds JVM profiles that have been used during the lifetime of the

CICS region. The command returns each 8–character JVM profile name, as used in

a PROGRAM resource definition, and the full path name of the HFS file for that

JVM profile. (Note that there is no CEMT equivalent for this command.) The

command also tells you whether or not JVMs with that profile use the shared class

cache.

You can collect statistics for JVM profiles by using the EXEC CICS COLLECT

STATISTICS command, or the CEMT PERFORM STATISTICS command, with the

JVMPROFILE option. The statistics are broken down by JVM profile and execution

key, and they show, among other things:

v The number of requests made by applications for JVMs of this profile.

v The total, current and peak number of JVMs of this profile that were in the JVM

pool.

v The number of times JVMs of this profile were marked unresettable and

destroyed (because an application performed an unresettable action in a JVM

defined as resettable).

v The number of JVMs of this profile that were destroyed because CICS was short

on storage.

v The incidence of TCB stealing by, and from, JVMs of this profile.

v The Language Environment heap storage and JVM heap storage used by JVMs

of this profile.

“Interpreting JVM statistics” in the CICS Performance Guide has more information

about JVM statistics, and tells you how to find the full listings and reports for these

statistics.

Monitoring JVM programs

You can use the EXEC CICS COLLECT STATISTICS command, or the CEMT

PERFORM STATISTICS command, with the JVMPROGRAM option, to collect

statistics on Java programs that run in a JVM. (CICS does not collect statistics for

these programs when a COLLECT or PERFORM STATISTICS PROGRAM

command is issued, because the JVM programs are not loaded by CICS.) The JVM

program statistics show, for each program:

v The JVM profile that the program requires (as specified in the JVMPROFILE

attribute of the PROGRAM resource definition).

v The execution key that the program requires (CICS key or user key, as specified

in the EXECKEY attribute of the PROGRAM resource definition).

v The main class in the program (the Java class whose public static main

method is to be invoked, as specified in the JVMCLASS attribute of the

PROGRAM resource definition).

v The number of times that the program has been used.

“Interpreting JVM statistics” in the CICS Performance Guide has more information

about JVM statistics, and tells you how to find the full listings and reports for these

statistics.

Terminating or disabling the JVM pool

CICS reduces the number of active JVMs automatically if the workload does not

require them. If a JVM is inactive for 30 minutes, it is discarded.

134 Java Applications in CICS

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

|
|
|

|
|

|

|
|

|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|

|

|
|
|

|

|
|

You can terminate all the JVMs in the JVM pool by using a CEMT SET JVMPOOL

PHASEOUT, PURGE or FORCEPURGE command (or the equivalent EXEC CICS

command). When you use this command, all the JVMs in the pool, both worker

JVMs using the shared class cache and standalone JVMs running independently of

the shared class cache, are terminated. The shared class cache is also terminated

once all the worker JVMs that were dependent on it have been terminated. On the

CEMT SET JVMPOOL command:

v If you use the PHASEOUT option, the JVMs are marked for deletion, but they

are only terminated when they finish running their current Java programs.

v If you use the PURGE option, the tasks using JVMs are purged, and the JVMs

are terminated.

v If you use the FORCEPURGE option, the tasks using JVMs are forcepurged, and

the JVMs are terminated.

You can also disable the JVM pool so that it cannot service new requests, by using

a CEMT SET JVMPOOL DISABLED command (or the equivalent EXEC CICS

command). When you disable the JVM pool, the JVMs in it are retained, but new

Java programs cannot use them until you enable the JVM pool again. Java

programs that are already using a JVM are allowed to finish running. To re-enable

the JVM pool, use the CEMT SET JVMPOOL ENABLED command (or the

equivalent EXEC CICS command).

Redirecting JVM output

By default, output from Java applications running in a JVM is written to the HFS

files that are named by the STDOUT and STDERR options in the JVM profile for

the JVM. The file named by the STDOUT option is used for System.out requests,

and the file named by the STDERR option is used for System.err requests. The

output files are located in the working directory named by the WORK_DIR option in

the JVM profile.

You can specify a fixed file name for each of the output files, in which case the

output from multiple JVMs is appended to the named file, and the output is

interleaved. However, the records are not given headers. Alternatively, you can use

the -generate option on the STDOUT and STDERR options to specify that file

names should be generated when the JVM is started up. If you do this, each JVM

can have its own output files, identified by a time stamp and the applid of the CICS

region. Otherwise, the output from the JVMs in all your CICS regions will be written

to the same output files. However, note that the use of the -generate option is not

recommended in a production environment, because it can be detrimental to the

performance of your JVMs. “Options in JVM profiles” in the CICS System Definition

Guide tells you more about the STDOUT and STDERR options, and “Customizing

or creating JVM profiles and JVM properties files” on page 102 tells you how to

customize the options in a JVM profile.

To gain more control over the output from your JVMs, as well as specifying the

STDOUT and STDERR options, you can use the USEROUTPUTCLASS option in a

JVM profile to name a Java class that intercepts the output from the JVM and

messages from JVM internals. You can use this Java class to redirect the output

and messages from your JVMs, and you can add time stamps and headers to the

output records. The HFS files named by the STDOUT and STDERR options in the

JVM profile are still used for some messages issued by the JVM, or if the class

named by the USEROUTPUTCLASS option is unable to write data to its intended

destination. You should therefore still specify appropriate file names for these files.

Chapter 11. Using JVMs 135

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

Specifying the USEROUTPUTCLASS option has a negative effect on the

performance of JVMs. For best performance in a production environment, you

should not use this option. However, it can be useful to specify the

USEROUTPUTCLASS option during application development. This is because even

if you use the -generate option on the STDOUT and STDERR options, the

generated output files can only be differentiated by the applid of the CICS region

and the time of generation. The USEROUTPUTCLASS option enables developers

using the same CICS region to separate out their own JVM output, and direct it to

an identifiable destination of their choice. The USEROUTPUTCLASS option can be

used for most types of JVM, with the exception of the master JVM that initializes

the shared class cache, because the output redirection class will never be invoked

by the activities of the master JVM.

To use the USEROUTPUTCLASS option, specify USEROUTPUTCLASS=[java class] in

a JVM profile, naming the Java class of your choice. (The class extends

java.io.OutputStream.) The CICS-supplied sample JVM profiles DFHJVMPR,

DFHJVMPC and DFHJVMCD contain the commented-out option

USEROUTPUTCLASS=com.ibm.cics.samples.SJMergedStream, which names the

CICS-supplied sample class. Uncomment this option to use the

com.ibm.cics.samples.SJMergedStream class to handle output from JVMs with that

profile. CICS also supplies an alternative sample Java class,

com.ibm.cics.samples.SJTaskStream. The behaviour of both these classes is

described later in this topic.

The classes are shipped as a middleware class file dfjoutput.jar, which is in the

directory /usr/lpp/cicsts/cicsts31/lib, where cicsts31 is a user-defined value

that you chose for the CICS_DIRECTORY variable used by the DFHIJVMJ job

during CICS installation. The source for the classes is also provided as samples, so

you can modify the classes as you want, or write your own classes based on the

samples. The CICS Customization Guide tells you how to do this.

Table 7 shows what output from JVMs can and cannot be intercepted by the class

named by the USEROUTPUTCLASS option. The class that you use must be able

to deal with all the types of output that it might intercept.

 Table 7. JVM output intercepted by Java class named by USEROUTPUTCLASS

Output type Intercepted by class

System.out output Yes

System.err output Yes

JVM internal messages Yes

Unresettable events log (controlled by

ibm.jvm.events.output system property)

Yes (unless another destination file is

explicitly named in the system property). See

note 1 on page 137.

Language Environment stdout and stderr

output

Not intercepted

JAVADUMP Not intercepted

HPITRACE Not intercepted

136 Java Applications in CICS

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

||

||

||

||

||

|
|
|
|
|

|
|
|

||

||

Table 7. JVM output intercepted by Java class named by

USEROUTPUTCLASS (continued)

Output type Intercepted by class

Note:

1. The destination for information about unresettable events in a resettable JVM is

controlled by the ibm.jvm.events.output system property in the JVM properties file for the

JVM. If you have used that system property to name a specific HFS file as the

destination for the unresettable events information, then the information goes to that file,

and is not intercepted. (The default ibm.jvm.events.output system property in the

CICS-supplied sample JVM properties files names the file event.log as the destination.)

If the system property names the destination as stdout or stderr, then the information is

intercepted by the class named on the USEROUTPUTCLASS option in the JVM profile,

and directed to the destination specified by that class. If the ibm.jvm.events.output

system property is null, then this output is not produced at all.

The class that you are using must be present in a directory on the trusted

middleware class path used by the JVM (to which you can add paths by using the

TMPREFIX or TMSUFFIX option in the JVM profile). If you are using your own

class in place of the supplied sample class, any associated native code for your

class must be present on the library path used by the JVM (specified by the

LIBPATH option in the JVM profile), and must be explicitly loaded using the

System.loadLibrary() call, either at class load time via a static initializer, or in the

class constructor. (This avoids the need to include doPrivileged() blocks around the

loadLibrary call when you are running with Java security active.) Note that if the

JVM is to use the shared class cache (if CLASSCACHE=YES is specified in the

JVM profile), you will need to include the class and any associated native code in

the trusted middleware class path and library path that are specified in the JVM

profile for the master JVM that initializes the shared class cache, rather than those

specified in the JVM profile for the JVM itself. The CICS-supplied sample JVM

profile for the master JVM is DFHJVMCC, and the JVM properties file that it

references is dfjjvmcc.props.

Also bear in mind that the Java programs that will run in JVMs that use the

USEROUTPUTCLASS option should include appropriate exception handling to deal

with the exceptions that might be thrown by a class named on the

USEROUTPUTCLASS option. The CICS-supplied sample classes handle all

exceptions internally, so they do not return any errors to the calling program.

The CICS-supplied sample classes

com.ibm.cics.samples.SJMergedStream and

com.ibm.cics.samples.SJTaskStream

For Java applications executing on the initial process thread (IPT), which are able

to make CICS requests, the intercepted output from the JVM can be written to a

transient data queue, and you can add time stamps, task and transaction identifiers,

and program names. This enables you to create a merged log file containing the

output from multiple JVMs. You can use this log file to correlate JVM activity with

CICS activity. The CICS-supplied sample class,

com.ibm.cics.samples.SJMergedStream, is set up to create merged log files like

this.

The com.ibm.cics.samples.SJMergedStream class directs output from the JVM to

the transient data queues CSJO (for stdout output), and CSJE (for stderr output,

internal messages, and unresettable event logging). These transient data queues

are supplied in group DFHDCTG, and they are indirected to CSSL, but they can be

redefined if necessary. In particular, note that the length of messages issued by the

Chapter 11. Using JVMs 137

|
|

||

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

JVM can vary, and the maximum record length for the CSSL queue (133 bytes)

might not be sufficient to contain some of the messages you receive. If this

happens, the sample output redirection class issues an error message, and the text

of the message might be affected. If you find that you are receiving messages

longer than 133 bytes from the JVM, you should redefine CSJO and CSJE as

separate transient data queues. Make them extrapartition destinations, and increase

the record length for the queue. You can allocate the queue to a physical data set

or to a system output data set. You might find a system output data set more

convenient in this case, because you do not then need to close the queue in order

to view the output. The CICS Resource Definition Guide tells you how to define

transient data queues. If you redefine CSJO and CSJE, ensure that they are

installed as soon as possible during a cold start, in the same way as for transient

data queues that are defined in group DFHDCTG.

If the transient data queues CSJO and CSJE cannot be accessed, output is written

to the HFS files /work_dir/applid/stdout/CSJO and /work_dir/applid/stderr/
CSJE, where work_dir is the directory specified on the WORK_DIR option in the

JVM profile, and applid is the applid identifier associated with the CICS region. If

these files are unavailable, the output is written to the HFS files named by the

STDOUT and STDERR options in the JVM profile.

As well as redirecting the output, the class adds a header to each record containing

applid, date, time, transid, task number and program name. The result is two

merged log files for JVM output and for error messages, in which the source of the

output and messages can easily be identified.

For Java applications executing on threads other than the initial process thread

(IPT), which are not able to make CICS requests, the output from the JVM cannot

be redirected using CICS facilities. The com.ibm.cics.samples.SJMergedStream

class still intercepts the output and adds a header to each record containing applid,

date, time, transid, task number and program name. The output is then written to

the HFS files /work_dir/applid/stdout/CSJO and /work_dir/applid/stderr/CSJE

as described above, or if these files are unavailable, to the HFS files named by the

STDOUT and STDERR options in the JVM profile.

As an alternative to creating merged log files for your JVM output, you can direct

the output from a single task to HFS files, and add time stamps and headers, to

provide output streams that are specific to a single task. The CICS-supplied sample

class, com.ibm.cics.samples.SJTaskStream is set up to do this. The class directs

the output for each task to two HFS files, one for stdout output and one for stderr

output, that are uniquely named using a task number (in the format

Task.tasknumber). The HFS files are stored in the directory /work_dir/applid/
stdout for stdout output, or /work_dir/applid/stderr for stderr output, where

work_dir is is the directory specified on the WORK_DIR option in the JVM profile,

and applid is the applid identifier associated with the CICS region. The process is

the same for both Java applications executing on the IPT, and Java applications

that are executing on other threads.

When an error is encountered by the CICS-supplied sample output redirection

classes, one or more error messages are issued reporting this. If the error occurred

while processing an output message, then the error messages are directed to

System.err, and as such are eligible for redirection. However, if the error occurred

while processing an error message, then the new error messages are sent to the

file named by the STDERR option in the JVM Profile. This is done to avoid a

recursive loop in the Java class. The classes do not return exceptions to the calling

Java program.

138 Java Applications in CICS

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

The classes are shipped as a middleware class file dfjoutput.jar, which is in the

directory /usr/lpp/cicsts/cicsts31/lib, where cicsts31 is a user-defined value

that you chose for the CICS_DIRECTORY variable used by the DFHIJVMJ job

during CICS installation. The source for the classes is also provided as samples, so

you can modify the classes as you want, or write your own classes based on the

samples. The CICS Customization Guide tells you how to customize these classes,

or write your own classes based on the samples.

Problem determination for JVMs

Many of the usual sources of CICS diagnostic information contain information that

applies to JVMs, including:

v Abend codes and error messages. CICS Messages and Codes lists the

messages that apply to the SJ (JVM) domain. These are in the format

DFHSJxxxx.

v Statistics. “Monitoring JVM activity” on page 132 lists the statistics information

that CICS collects for JVMs.

v Monitoring data. “Managing your JVM pool for performance” in the CICS

Performance Guide lists the monitoring data fields that relate to JVMs.

v The trace points for the SJ (JVM) domain. “JVM domain trace points” in CICS

Trace Entries has details of these trace points.

In addition to this CICS-supplied information, there are a number of interfaces

specific to the JVM that you can use for problem determination. The JVM’s own

diagnostic tools and interfaces give you more detailed information about what is

happening within the JVM than CICS can, because CICS is unaware of many of the

activities within a JVM.

The CICS documentation provides more information about some of these diagnostic

tools and interfaces, as follows:

v “Controlling tracing for JVMs” on page 140 tells you how you can use the JVM’s

internal trace facility through the interfaces provided by CICS. The JVM’s internal

trace facility can provide detailed tracing of entry, exit, and event points within the

JVM. CICS enables you to control JVM tracing by using the CETR transaction

and by using CICS system initialization parameters. The JVM trace information

that is produced is output as CICS trace (specifically, as instances of CICS trace

point SJ 4D01).

v “Debugging an application that is running in a CICS JVM” on page 142 tells you

how you can use a remote debugger to step through the application code for a

Java application that is running in a JVM. CICS also provides a set of

interception points (or “plugins”) in the CICS Java middleware, which allows

additional Java programs to be inserted immediately before and after the

application Java code is run, for debugging, logging, or other purposes. These

plugins are described in “The CICS JVM plugin mechanism” on page 146.

Many more diagnostic tools and interfaces are available for the JVM. The IBM

Developer Kit and Runtime Environment, Java 2 Technology Edition, Version 1.4.2

Diagnostics Guide, SC34-6358, which is available to download from

www.ibm.com/developerworks/java/jdk/diagnosis/ has information about further

facilities that can be used for problem determination for JVMs. You might find the

following facilities especially useful:

v The JVM’s internal trace facility can be used directly, without going through the

interfaces provided by CICS. CICS uses the JVM’s ibm.dg.trc.external system

property, which can be set either in the JVM properties file or through CETR, to

Chapter 11. Using JVMs 139

|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

control tracing for the JVM. However, the JVM has several other system

properties that can be set to output trace. The IBM Developer Kit and Runtime

Environment, Java 2 Technology Edition, Version 1.4.2 Diagnostics Guide has

information about all the system properties that you can use to control the JVM’s

internal trace facility and to output JVM trace information to various destinations.

You can use these system properties to output trace from any method or class

within the JVM, and to find the value of any parameters and return types on the

method call.

v If you experience memory leaks in the JVM, you can request a Heapdump from

the JVM. A Heapdump generates a dump of all the live objects (objects still in

use) that are in the JVM’s nonsystem heap.

v The HPROF profiler, which is shipped with the IBM Software Developer Kit for

z/OS, Java 2 Technology Edition, Version 1.4.2, provides performance

information for applications that run in the JVM, so you can see which parts of a

program are using the most memory or processor time.

v The JVM provides interfaces for monitoring, profiling, and RAS (Reliability,

Availability and Serviceability).

If you are using enterprise beans, Chapter 24, “Dealing with CICS enterprise bean

problems,” on page 325 has more information about issues that apply specifically to

them.

Controlling tracing for JVMs

You can control tracing for JVMs using the CICS-supplied transaction CETR. With

CETR, you can activate tracing for each transaction that uses the JVM. You can set

several levels of tracing (or a user-defined option string) using the JVM trace

options, turn tracing on or off at each level for transactions, or reset to the supplied

settings. JVM tracing can produce a large amount of output, so you should normally

activate it for special transactions, rather than turning it on globally for all

transactions. “Using JVM trace options” in CICS Supplied Transactions tells you

how to use CETR to control tracing for JVMs.

The default JVM trace options that are provided in CICS use the JVM trace point

level specifications. The default settings for JVM Level 0 trace, JVM Level 1 trace,

and JVM Level 2 trace specify LEVEL0, LEVEL1, and LEVEL2 respectively, so they

map to the Level 0, Level 1 and Level 2 trace point levels for JVMs. A Level 0 trace

point is very important, and this classification is reserved for extraordinary events

and errors. Note that unlike CICS exception trace, which cannot be switched off, the

JVM Level 0 trace is normally switched off unless JVM tracing is required. The

Level 1 trace points and Level 2 trace points provide deeper levels of tracing. The

JVM trace point levels go up to Level 9, which provide in-depth component detail.

It is suggested that you keep the CICS-supplied level specifications, but if you find

that another JVM trace point level is more useful for your purposes than one of the

default levels, you could change the level specification to map to your preferred

JVM trace point level (for example, you could specify LEVEL5 instead of LEVEL2

for the JVMLEVEL2TRACE option). Note that enabling a JVM trace point level

enables that level and all levels above it, so for example, if you activate JVM Level

1 trace for a particular transaction, you receive Level 0 trace points for that

transaction as well. This means that you only need to activate the deepest level of

tracing that you require, and the other levels are activated as well.

You can add further parameters to the basic level specifications for JVM Level 0

trace, JVM Level 1 trace, and JVM Level 2 trace, if you want to include or exclude

140 Java Applications in CICS

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

particular components or trace point types at the selected trace levels. If you want

to create more complex specifications for JVM tracing which use multiple trace point

levels, or if you do not want to use trace point levels at all in your specification, use

the JVMUSERTRACE option to create a trace option string that includes the

parameters of your choice. “Defining tracing for JVMs” in the CICS Problem

Determination Guide has information about the JVM trace options that you can set

using the JVM Level 0 trace, JVM Level 1 trace, JVM Level 2 trace, and JVM User

trace levels. There is further information about JVM trace and about problem

determination for JVMs in the IBM Developer Kit and Runtime Environment, Java 2

Technology Edition, Version 1.4.2 Diagnostics Guide, SC34-6358, which is available

to download from www.ibm.com/developerworks/java/jdk/diagnosis/.

There are alternatives to using CETR to control tracing for JVMs. You can set the

JVM trace options by:

v Using the CICS system initialization parameters JVMLEVEL0TRACE,

JVMLEVEL1TRACE, JVMLEVEL2TRACE, and JVMUSERTRACE (see the CICS

System Definition Guide) to set the default trace options for JVMs in the JVM

pool in your CICS region. You can only supply these parameters at CICS startup

time; you cannot define them in the DFHSIT macro. You can then use CETR to

view and change these options, if you want. These system initialization

parameters do not activate JVM tracing, they only set the default JVM trace

options.

v Using the EXEC CICS INQUIRE JVMPOOL command to inquire on the JVM

trace options you have set for the JVM pool, and the EXEC CICS SET

JVMPOOL command to change them. (Note that the JVM trace options are not

available on the CEMT equivalents for these commands.)

You can activate JVM trace by:

v Using the CICS system initialization parameters SPCTRSJ, which applies to

special tracing , or STNTRSJ (see the definition for STNTRxx in the CICS

System Definition Guide), which applies to standard tracing, to activate JVM

trace at startup. Specify level numbers 29–32 to activate the levels of JVM trace

that you require. You can only supply these parameters at CICS startup time; you

cannot define them in the DFHSIT macro.

v Using the EXEC CICS SET TRACETYPE command to set trace levels 29–32 for

the SJ component.

Remember that JVM trace should normally only be activated for special

transactions. If you are activating JVM trace by one of these alternative methods,

you should normally use the SPCTRSJ system initialization parameter rather than

the STNTRSJ system initialization parameter, and use the SPECIAL option on the

EXEC CICS SET TRACETYPE command, rather than the STANDARD option.

If you need to trace a JVM during its whole lifetime, including start-up and reset as

well as the periods when it is being used by a transaction, you can set and activate

trace options using the ibm.dg.trc.external system property in the JVM properties

file that is referenced by the JVM profile. (“Customizing or creating JVM profiles and

JVM properties files” on page 102 tells you how to set system properties for a

JVM.) This system property has to be used with care, as JVM tracing can produce

large amounts of output in a very short time. “Defining tracing for JVMs” in the

CICS Problem Determination Guide has information about the JVM trace options

that you can set using this system property.

When CICS starts to use or re-use a JVM, it ensures that any trace options that

you have set and activated using CETR are applied. Activating or deactivating a

trace option using CETR overrides any setting for that trace option in the

Chapter 11. Using JVMs 141

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

ibm.dg.trc.external system property. For example, a trace option that is activated

in the system property, but deactivated using CETR, will be deactivated when CICS

starts to use or re-use the JVM. If you use CETR to activate any trace options that

are not referred to in the ibm.dg.trc.external system property, the trace options

that you have specified in CETR are added to any trace options that you have set

using the ibm.dg.trc.external system property. The trace output will then reflect all

the trace options that you requested in both CETR and the system property.

JVM trace appears as CICS trace points in the JVM domain. When you activate

JVM trace by setting trace levels 29–32 for the SJ component, each JVM trace

point that is generated appears as an instance of CICS trace point SJ 4D01. If the

JVM trace facility fails, CICS issues the trace point SJ 4D00.

In addition to the JVM trace options, the standard trace points for the SJ (JVM)

domain, at CICS trace levels 0, 1 and 2, can be used to trace the actions that CICS

takes in setting up and managing JVMs and the shared class cache. These trace

points can be activated using the CETR Component Trace screens, as described in

“Selecting tracing by component” in the CICS Problem Determination Guide. The SJ

domain includes a level 2 trace point SJ 0224, which shows you a history of the

programs that have used each JVM. “JVM domain trace points” in CICS Trace

Entries has details of all the standard trace points in the SJ domain.

Debugging an application that is running in a CICS JVM

The JVM in CICS supports the Java Platform Debugger Architecture (JPDA), which

is the standard debugging mechanism provided in the Java 2 Platform. This

architecture provides a set of APIs that allow the attachment of a remote debugger

to a JVM. A number of third party debug tools are available that exploit JPDA and

can be used to attach to and debug a JVM that is running an enterprise bean,

CORBA object or Java program. Typically the debug tool provides a graphical user

interface that runs on a workstation and allows you to follow the application flow,

setting breakpoints and stepping through the application source code, as well as

examining the values of variables. The debugging process is summarized in

Figure 9 on page 143.

142 Java Applications in CICS

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

JPDA consists of the following layered APIs:

Java Debug Interface (JDI)

This is a Java programming language interface providing support for remote

debugging. This is the highest level interface in the architecture, and can be

used to implement a remote debugger user interface without having to write

any code that runs in the application JVM or understand the protocol

between the debugger and the JVM. Most third party debuggers that

support JPDA currently use this API.

Java Debug Wire Protocol (JDWP)

This API defines the format of the flows that run between the application

JVM and the debugger user interface. This protocol is for use by debuggers

that need to exploit the communication at a lower level than the JDI, and for

JVM suppliers or more advanced debugger developers who need to support

the standard connection architecture from the application JVM side.

Java Virtual Machine Debug Interface (JVMDI)

This is a low-level native interface within the JVM. It defines the services a

Java virtual machine must provide for debugging, and can be used by

advanced debugger developers who wish to implement debugger code that

runs inside the application JVM (to implement an alternative transport

mechanism for debugger connection, for example).

When you start the JVM in debug mode, the JVMDI interface is activated and

additional threads are started in the JVM. One of these threads handles

communication with the remote debugger, the others monitor the application that is

running in the JVM. You can issue commands in the remote debugger, for example

to set break points or to examine the values of variables in the application. These

commands are activated by the listener and event handler threads in the JVM.

There is more information about JPDA on the web site java.sun.com/products/
jpda.

CICS server

Debug JVM

Server application

(CICS EJB, CORBA

or CICS Java

program)

J

V

M

D

I

Remote debugger

Java debug interface
(JDI)

Client application

JDWP over
TCP/IP

connection
Debug listener thread

Debug event handler
threads

IIOP, ECI or
terminal

connection

Figure 9. Debugging in the CICS JVM using JPDA.

Chapter 11. Using JVMs 143

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

Attaching a debugger to a CICS JVM

To run a JVM in debug mode and allow a JPDA remote debugger to be attached,

you need to set some options in the JVM profile for the JVM. “Customizing or

creating JVM profiles and JVM properties files” on page 102 explains the procedure

for customizing options in a JVM profile.

The specific options required for debugging are as follows:

Xdebug=YES

This is needed to start the JVM in debug mode (that is, with the JPDA

interfaces active)

Xrunjdwp=(suboption=...,suboption=...)

This option specifies the details of the connection between the debugger

and the CICS JVM. These details include the TCP/IP address to be used

for the connection, and the sequence in which connection occurs. Different

debuggers have different connection requirements and capabilities; refer to

the documentation provided with the debugger. Some typical example

settings are as follows:

Xrunjdwp=(transport=dt_socket,server=y,address=9876)

This set of suboptions specifies that:

v The standard TCP/IP socket connection mechanism is used

v The server starts first (server=y) and waits for the debugger to

attach to it

v The CICS JVM listens on TCP/IP port 9876 for a debugger to

attach to it.

The CICS JVM waits after initialization for instructions from the

debugger before executing the application code.

If you’re using the Java debugger supplied with WebSphere Studio

Enterprise Edition, you should specify the Xrunjdwp option in your

JVM profile. In addition, in WebSphere Studio you must create a

Remote Java Application definition, within the Debug Perspective,

that specifies:

v The IP address (or host name) of the z/OS system that hosts the

CICS region.

v The TCP/IP port number (called “address” in the Xrunjdwp

syntax) that the CICS JVM is using. (This is the same number

specified to CICS on the Xrunjdwp option.)

v That a standard TCP/IP socket connection (Socket Attach) is to

be used.

Xrunjdwp=(transport=dt_socket,address=bos.hurs.ibm.com:6789)

This set of suboptions specifies that:

v The standard TCP/IP socket connection mechanism is used

v Omitting the server option defaults to server=no, which means

the debugger starts first and waits for the JVM to attach to it

v The JVM attaches to a debugger that is running on a machine

called bos.hurs.ibm.com on port number 6789.

After initialization the JVM waits for instructions from the debugger

before executing the application code.

If your debugger is WebSphere Studio, you must specify server=y.

144 Java Applications in CICS

|

|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|
|

|
|

|

REUSE=NO

A JVM that has been run in debug mode is not a candidate for reuse. Set

this option to NO to ensure that the JVM is discarded after the debug

session.

The CICS System Definition Guide has full information about the options available

in a JVM profile.

When you set these options in a JVM profile, any CICS JVM program that uses that

profile runs in debug mode (and waits for attach from, or attempts to attach to a

debugger). You should therefore ensure that the JVM profile applies only to

programs that you wish to debug. Remember:

v Never configure for debug the JVM profiles that are involved with the shared

class cache; that is, the JVM profiles for worker JVMs that specify

CLASSCACHE=YES, and the JVM profile for the master JVM that initializes the

shared class cache. JVM debugging is not supported for shared classes, and if

you configure these JVM profiles for debug, CICS ignores your setting.

DFHJVMPC and DFHJVMCC are the CICS-supplied sample profiles for worker

and master JVMs respectively.

v Avoid configuring for debug the CICS-supplied sample JVM profiles

DFHJVMPR and DFHJVMPS, and the JVM profile DFHJVMCD for

CICS-supplied system programs. It is possible to configure these profiles for

debug, provided they have not been changed to specify CLASSCACHE=YES,

but because they are used as defaults within CICS, there is a strong risk that

they will be used for programs other than those you want to debug.

Instead of configuring any of the CICS-supplied sample profiles for debug, you

should create a separate JVM profile specifically for debug use, and set the

appropriate CICS PROGRAM resource definition to use this debug JVM profile.

For enterprise beans, you need to specify the debug JVM profile in the PROGRAM

definition for the request processor program that is used by the enterprise bean.

The default request processor program, which is named by the default CIRP

transaction on REQUESTMODEL definitions, is DFJIIRP. To modify CICS-supplied

definitions for this purpose, such as those in CSD group DFHIIOP, you have to copy

the definitions to your own group first—DFHIIOP is locked and cannot be modified.

However, bear in mind that if you modify the PROGRAM definition for the default

request processor program to use the debug JVM profile, there is a strong risk that

it will be used for programs other than those you want to debug. It is safer to set up

a different PROGRAM definition to be used by the enterprise beans that you want

to debug.

Errors during initialization of the debug connection (for example incorrect TCP/IP

host or port values) result in messages on the JVM standard output and standard

error streams. “Redirecting JVM output” on page 135 tells you how to set the

destination for these messages.

The debugger should give an indication that it has successfully attached to the

CICS JVM. The initial state of the JVM (such as the identity of threads that have

started, and system classes that are loaded) is visible in the debugger user

interface. The JVM will have suspended execution, and the Java application in

CICS (enterprise bean, CORBA object or Java program) will not yet have started.

Your next action is normally to set a breakpoint at a suitable point in the Java

application by specifying the full Java class name and source code line number. As

the application class will not usually have been loaded at this point, the debugger

indicates that activation of this breakpoint is deferred until the class is loaded. You

Chapter 11. Using JVMs 145

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

should then let the JVM run through the CICS middleware code to the application

breakpoint, at which point it suspends execution again. You can then examine

loaded classes, and variables, set further breakpoints and step through code as

required.

To terminate the debug session you can let the application run to completion, at

which point the connection between the debugger and the CICS JVM closes. Some

debuggers support forced termination of the JVM. This normally results in an abend

and error messages on the CICS system console.

To fully enable the capabilities of a Java source code debugger, the Java code to

be debugged must be compiled using the -g option on the Java compiler (javac

command). Additional symbolic information is then preserved in the .class file,

which is used when the debugger is attached at run time. IDEs usually support this

compiler option via a user setting .

The CICS JVM plugin mechanism

In addition to the standard JPDA debug interfaces in the JVM, CICS provides a set

of interception points in the CICS Java middleware, which can be of value to

developers of debugging applications. These interception points (or plugins) allow

additional Java programs to be inserted immediately before and after the application

Java code is run. Information about the application (for example classname and

method name) is made available to the plugin programs. The plugin programs can

also use the JCICS API to obtain information about the application. These

interception points can be used in conjunction with the standard JPDA interfaces to

provide additional CICS-specific debug facilities. They can also be used for

purposes other than debugging, in a similar way to user exit points in CICS.

There are three Java exit points:

v A CICS EJB container plugin providing methods that are called immediately

before and after an EJB method is invoked.

v A CICS CORBA plugin providing methods that are called before and after a

CORBA method is invoked.

v A CICS Java Wrapper plugin providing methods that are called immediately

before and after a Java program is invoked

When you use plugin programs to debug Java applications, you need to:

v Code the programs to the standards required of trusted middleware code.

Middleware is responsible for resetting itself correctly at the end of a transaction

and, if necessary, for reinitializing at the beginning of a new transaction, in order

to isolate different applications from each other. Persistent Reusable Java Virtual

Machine User’s Guide, SC34-6201 explains how middleware should be written.

v Use the TMSUFFIX option in the appropriate JVM profile to include the programs

on the trusted middleware class path for the JVM which will be used by the

application that is to be debugged. “Adding application classes to the class paths

for a JVM” on page 128 tells you how to do this; classes for plugin programs can

be added in the same way as classes for ordinary applications.

If the classes for plugin programs are placed on other class paths, they might not

be accessible to the correct classloader, and could also cause resettable JVMs to

be marked as unresettable. Debug plugins can be used with resettable, continuous

and single-use JVMs (with REUSE=RESET, REUSE=YES or REUSE=NO in the

JVM profile), provided that the classes are placed on the trusted middleware class

path.

146 Java Applications in CICS

|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

The programming interface consists of two Java interfaces. DebugControl (full

name: com.ibm.cics.server.debug.DebugControl) defines the method calls that can

be made to a user-supplied implementation, and Plugin (full name:

com.ibm.cics.server.debug.Plugin) provides a general purpose interface for

registering the plugin implementation. These interfaces are supplied in dfjwrap.jar,

and documented in JAVADOC HTML (see “The JCICS class library” on page 17 for

more information).

The code fragment in Figure 10 shows an example implementation of the

DebugControl interface.

 The code fragment in Figure 11 on page 148 shows an example implementation of

the DebugControl and Plugin interfaces.

public interface DebugControl

{

 // called before an application object method or program main is invoked

 public void startDebug(java.lang.String className,java.lang.String methodName);

 // called after an application object method or program main is invoked

 public void stopDebug(java.lang.String className,java.lang.String methodName);

 // called before an application object is deleted

 public void exitDebug();

}

public interface Plugin

{

 // initaliser, called when plugin is registered

 public void init();

}

Figure 10. Definitions of the DebugControl and Plugin interfaces

Chapter 11. Using JVMs 147

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

In order to activate a debug plugin implementation you need to set one or more of

the following system properties in the JVM properties file for the JVM:

v com.ibm.cics.server.debug.EJBPlugin=<fully qualified classname,

 for example com.ibm.cics.server.debug.SampleCICSDebugPlugin>

This is the EJB container debug plugin. If this is set, the supplied plugin is

registered by Java code in the CICS EJB server layer when the EJB container is

initialized.

v com.ibm.cics.server.debug.CORBAPlugin=<fully qualified classname,

 for example com.ibm.cics.server.debug.SampleCICSDebugPlugin>

This is the CORBA debug plugin. If this is set, the supplied plugin is registered

by Java code in the CICS ORB when the ORB is initialized.

v com.ibm.cics.server.debug.WrapperPlugin=<fully qualified classname,

 for example com.ibm.cics.server.debug.SampleCICSDebugPlugin>

This is the CICS Java debug plugin. If this is set, the supplied plugin is registered

by additional Java code in the JCICS wrapper when the Java program is run.

Note that more than one plugin interface may be triggered when a Java application

is run. For example, if plugin implementations are registered for all three interfaces,

and an enterprise bean method is run, the JCICS wrapper, CORBA and EJB

plugins will be triggered in succession.

The CICS System Definition Guide tells you about the system properties available

for JVMs. “Setting up JVM profiles and JVM properties files” on page 94 tells you

import com.ibm.cics.server.debug.*;

public class SampleCICSDebugPlugin

 implements Plugin, DebugControl

{

 // Implementation of the plugin initialiser

 public void init()

 {

 // This method is called when the CICS Java middleware loads and

 // registers the plugin. It can be used to perform any initialisation

 // required for the debug control implementation.

 }

 // Implementations of the debug control methods

 public void startDebug(java.lang.String className,java.lang.String methodName)

 {

 // This method is called immediately before the application method is

 // invoked. It can be used to start operation of a debugging tool. JCICS

 // calls such as Task.getTask can be used here to obtain further

 // information about the application.

 }

 public void stopDebug(java.lang.String className,java.lang.String methodName)

 {

 // This method is called immediately after the application method is

 // invoked. It can be used to suspend operation of a debugging tool.

 }

 public void exitDebug()

 {

 // This method is called immediately before an application object is

 // deleted. It can be used to terminate operation of a debugging tool.

 }

}

Figure 11. Sample implementation of the DebugControl and Plugin interfaces

148 Java Applications in CICS

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|

how to customize them.

Chapter 11. Using JVMs 149

|

150 Java Applications in CICS

Part 4. CICS and IIOP

This Part tells you what you need to know to configure CICS to support distributed

IIOP applications.

© Copyright IBM Corp. 1999, 2006 151

152 Java Applications in CICS

Chapter 12. IIOP support in CICS

The Internet Inter-ORB protocol (IIOP) is a TCP/IP based implementation of the

General Inter-ORB Protocol (GIOP) that defines formats and protocols for

distributed applications. It is part of the Common Object Request Broker

Architecture (CORBA). Both client and server systems require a CORBA Object

Request Broker (ORB) to implement IIOP interoperability.

The Common Object Request Broker Architecture (CORBA) is a specification for a

standard object-oriented architecture for distributed applications. It was defined by a

consortium of over 500 information technology organizations called The Object

Management Group (OMG). You can read the CORBA Architecture and

Specification document at their web site:

http://www.omg.org/

CICS provides an ORB and support for IIOP defined by CORBA 2.3.

The Object Request Broker (ORB)

CORBA uses a broker, or intermediary, to handle requests between clients and

servers in the system. The broker chooses the best server to meet the client’s

request and separates the interface that the client sees from the implementation

of the server.

The broker, known as the ORB, intercepts client method calls and is responsible for

finding objects that can implement requests, passing them parameters, invoking

their methods, and returning results. The client does not need to know where the

object is located, its programming language, its operating system, or any other

system aspects that are not part of the object’s interface.

In this way, the ORB provides interoperability between applications on different

machines in heterogeneous distributed environments, and interconnects multiple

object systems.

The CICS ORB implements the following level of function:

v Support for CORBA Version 2.3, except for:

– Stateful CORBA objects (only stateless CORBA objects are supported).

Note: The only exception to this rule is stateful session beans—which are

supported.

– The Dynamic Invocation Interface (DII).

– The Dynamic Skeleton Interface (DSI).

– GIOP 1.1 fragments.

– The Portable Object Adapter (POA).

– Bi-directional GIOP

v Support for IIOP 1.2—including GIOP 1.2 fragments.

v Support for both inbound and outbound IIOP requests. IIOP applications can act

as both client and server.

v Support for transactional objects. CICS method invocations may participate in

Object Transaction Service (OTS) distributed transactions. If a client calls an IIOP

application within the scope of an OTS transaction, information about the

transaction flows as an extra parameter on the IIOP call. If the client ORB sends

© Copyright IBM Corp. 1999, 2006 153

an OTS Transaction Service Context and the target stateless CORBA object

implements CosTransactions::TransactionalObject, the object is treated as

transactional.

Note: An OTS transaction is a distributed unit of work, not a CICS transaction

instance or resource definition. For a description of a CICS transaction,

see “CICS transactions” on page 13.

ORB function is implemented in CICS by:

v The CICS sockets domain listener

v The CICS IIOP request receiver

v The CICS IIOP request processor

CICS IIOP application models

IIOP applications are client/server object-oriented programs executing in a TCP/IP

network. CICS supports the following types of IIOP application:

Stateless CORBA objects

Stateless CORBA objects are Java server applications that communicate with a

client application using the IIOP protocol. No state is maintained in object

attributes between successive invocations of methods; state is initialized at the

start of each method call and referenced by explicit parameters.

 Stateless CORBA objects can receive inbound requests from a client and can

also make outbound IIOP requests.

 CICS stateless CORBA objects execute in a CICS JVM.

 You can read more about CICS stateless CORBA objects in Chapter 27,

“Stateless CORBA objects,” on page 361.

Enterprise beans

Enterprise beans are portable Java server applications that use interfaces

defined by Sun Microsystem’s Enterprise JavaBeans Specification, Version 1.1.

CICS has implemented these interfaces by mapping them to underlying CICS

services.

 Enterprise beans communicate using the Java Remote Method Invocation (RMI)

interface. CICS supports RMI over IIOP, mediated by a CORBA Object Request

Broker (ORB).

 Enterprise beans can link to other CICS programs using the CCI Connector for

CICS TS. You can also develop enterprise beans that use the JCICS class

library to access CICS services or programs directly, but these server

applications are not portable to a non-CICS platform.

 Enterprise beans execute in a CICS JVM.

 You can read more about enterprise beans in Chapter 16, “What are enterprise

beans?,” on page 201.

Some common CORBA terminology

The following terms are used throughout this information segment:

CORBA

The Common Object Request Broker Architecture. An architecture and a

specification for distributed, object-oriented, computing.

154 Java Applications in CICS

GIOP The General Inter-Orb Protocol. The CORBA data representation

specification and interoperability protocol. It defines how different ORBs

communicate; it does not define which transport protocol to use.

IDL Interface Definition Language. A definition language that is used in CORBA

to describe the characteristics and behavior of a kind of object, including

the operations that can be performed on it.

IIOP The Internet Inter-Orb Protocol. Defines how to send GIOP messages over

a TCP/IP transport layer. IIOP is GIOP over TCP/IP.

Interface

Describes the characteristics and behavior of a kind of object, including the

operations that can be performed on those objects. This maps to a Java

class. In CORBA terminology, the client request specifies, in IDL, an

interface that defines the server object.

IOR Interoperable Object Reference. A “stringified” reference to a remote

CORBA object. It is published by the server ORB. The client application

must have access to the IOR at runtime. The client ORB can deconstruct

the IOR to determine (among other things) the location of the remote ORB

and object, the maximum version of GIOP supported by the remote ORB,

and any relevant CORBA services supported by the remote ORB.

Module

An IDL packaging construct containing interfaces. This maps to a Java

package.

OMG The Object Management Group. The consortium of software organizations

that has defined the CORBA architecture.

Operation

An action that can be performed on an object. This maps to a Java

method. In CORBA terminology, the client requests an operation, defined in

IDL, that is mapped to a method on the server object.

ORB The Object Request Broker. A CORBA system component that acts as an

intermediary between the client and server applications. Both client and

server platforms require an ORB; each is tailored for a specific

environment, but supports common CORBA protocols and IDL.

RMI-IIOP

The Remote Method Invocation (RMI) over IIOP specification and protocol.

The specification defines how to make the Java-specific RMI application

architecture inter-operate, using CORBA protocols. This is the

communication protocol used by enterprise beans.

Skeleton

A piece of code generated by the server IDL compiler. It is used by the

server ORB to parse a message into a method call on a local (to the

server) object.

Stub or proxy

A piece of code generated by the client IDL or RMI compiler. It is used by

the client application to invoke methods on the remote object. The stub

class calls methods on the client ORB, which in turn sends remote method

requests to the server ORB. The stub class must be generated for the

specific client ORB it is to be used with. If you use client ORBs from

different vendors, you should ensure that you are using client-side stubs

generated using the tools provided with the correct client ORB.

Chapter 12. IIOP support in CICS 155

Tie A piece of code generated by the RMI compiler. It is used by the server

ORB to parse a message into a method call on a local (to the server)

object.

156 Java Applications in CICS

Chapter 13. The IIOP request flow

The following diagram shows the execution flow of an incoming request:

The TCP/IP listener

The CICS TCP/IP listener monitors specified ports for inbound requests. You

specify IIOP ports and configure the listener by defining and installing

TCPIPSERVICE resources.

 The listener receives the incoming request and starts the transaction specified

in the TCPIPSERVICE definition for that port. For IIOP services, this transaction

resource definition must have the program attribute set to DFHIIRRS, the

request receiver program. The default transaction name is CIRR.

Request receiver

The request receiver retrieves the incoming request and examines the contents

of the GIOP formatted message stream. The following GIOP message types

can be received and are handled as follows:

Request

v A CICS USERID is determined from Secure Sockets Layer (SSL)

parameters, or by calling a CICS user-replaceable program specified by

the TCPIPSERVICE resource definition. The CICS USERID is used for

authorization of the request by the request processor.

v A CICS TRANSID is determined, from the message content, by

comparison with installed REQUESTMODEL resource definitions. The

CICS TRANSID defines execution parameters that are used if a new

request processor instance is created to handle the request.

v The request is passed to the request processor using an associated

request stream, which is an internal CICS routing mechanism. The

object key in the request, or any transaction service context, determines

if the request must be sent to an existing processor.

Request
Receiver

receive

send

Region boundary
(optional)

connect
request

GIOP
reply

GIOP
request

link

security
URM

DFHXOPUS

Sockets
listener

CIRR

Transaction
service

User
method

Container

Request
Processor
(java main/

ORB) invoke

CIRP

Figure 12. IIOP request execution flow

© Copyright IBM Corp. 1999, 2006 157

Note: A transaction in this context means a unit of work defined and

managed using the Object Transaction Service (OTS)

specification.

The request-handling logic uses a directory to determine if an IIOP

request should be routed to an existing request processor instance (by

means of its associated request stream). The directory, DFHEJDIR,

relates request streams (and request processor instances) to OTS

transactions and the object keys of stateful session beans that manage

their own transactions. DFHEJDIR is a recoverable CICS file.

v Incoming GIOP 1.1 Fragments are rejected with a GIOP MessageError

message.

LocateRequest

Locate requests have no operation or parameters. They are passed to a

new instance of the request processor.

CancelRequest

A cancel request notifies a server that the client is no longer expecting a

reply to a specified pending Request or LocateRequest message. This is an

advisory message only, no reply is expected. A cancel request received

during fragment processing causes the request in progress to be

terminated. All other cancel requests are ignored.

MessageError

A message error indicates that the client has not recognized a reply that the

request receiver has sent to it. This error is recorded for diagnostic

purposes and a CloseConnection message sent to end the connection.

Fragments

A fragment is a continuation of a Request or a Reply. It contains a GIOP

message header followed by data. Incoming GIOP 1.1 fragments are

rejected with a GIOP MessageError message.

 Linkage from the request receiver to the request processor can exploit CICS

dynamic routing services to provide load balancing within the CICSplex.

 The CIRR request receiver terminates when it has no further work to do. (That

is, CIRR terminates when there are no outstanding GIOP requests to read from

the TCPIPSERVICE and no outstanding responses to send from earlier

requests. Should further workload arrive for the TCPIPSERVICE after the CIRR

task has been terminated, a new CIRR task is started.)

Request processor

The request processor manages the execution of the IIOP request. It :

v Locates the object identified by the request

v For an enterprise bean request, calls the container to process the bean

method

v For a request for a stateless CORBA object, processes the request itself

(although the transaction service may also be involved)

The request processor instance that handles each IIOP request is configured by

a CORBASERVER resource definition.

158 Java Applications in CICS

IIOP in a sysplex

You can implement a CICS CORBA server in a single CICS region. However, in a

sysplex it’s likely that you’ll want to create a server consisting of multiple regions.

Using multiple regions makes failure of a single region less critical and enables you

to use workload balancing. A CICS logical server consists of one or more CICS

regions configured to behave like a single server.

Typically, a CICS logical server consists of:

v A set of cloned listener regions defined by identical TCPIPSERVICE resource

definitions to listen for incoming IIOP requests.

v A set of cloned application-owning regions (AORs), each of which supports an

identical set of IIOP applications or enterprise bean classes in an

identically-defined CorbaServer. Multiple methods for the same OTS transaction

are directed to the same AOR. Each AOR must have TCPIPSERVICE definitions

that match those in the corresponding listener regions.

Note:

The listener regions and AORs may be separate or combined into

listener/AORs. You must specify the following system initialization

parameters:

IIOPLISTENER=YES

Specify this value in a listener region, or in a combined listener/AOR.

YES is the default value.

IIOPLISTENER=NO

Specify this value in an AOR that is not also a listener region.

Workload balancing of IIOP requests

To balance client connections across the listener regions, you can use either IP

routing or connection optimization by means of Domain Name System (DNS)

registration.

To balance OTS transactions across a set of cloned AORs, you use distributed

routing. To implement distributed routing, you can use either CICSPlex SM or a

customized version of the CICS distributed routing program, DFHDSRP.

Domain Name System (DNS) connection optimization

Connection optimization is a technique that uses DNS to balance IP

connections in a sysplex domain. With DNS, multiple CICS systems are started

to listen for IIOP requests on the same port (using Virtual IP addresses), and

registered with MVS Workload Manager (WLM). Each client IIOP request

contains a generic host name and port number. This host name is resolved to

an IP address by DNS and WLM services.

 Connection Optimization using the WLM is described in the OS/390 V2R8.0

SecureWay® Communication Server: IP Configuration, SC31-8513-03.

Distributed routing

Distributed routing is used to balance method calls for enterprise beans and

CORBA stateless objects across a set of CICS application owning regions

(AORs). The dynamic selection of the target is made by the workload

manager—CICSPlex SM or a user-written distributed routing program—which

selects the least loaded or most efficient application region. CICS invokes the

workload manager for method requests that will run under a new, or no, OTS

Chapter 13. The IIOP request flow 159

transaction, but not for method requests that will run under an existing OTS

transaction; these are directed automatically to the AOR in which the existing

OTS transaction runs. See the CICS Customization Guide for guidance on

writing a customized distributed routing program. See the CICSPlex System

Manager Managing Workloads for information about CICSPlex SM Workload

Management.

 The following diagram shows a CICS logical server. In this example, the listener

regions and AORs are in separate groups, connection optimization is used to

balance client connections across the listener regions, and distributed routing is

used to balance OTS transactions across the AORs.

Domain Name System (DNS) connection optimization

Connection optimization is a technique that uses DNS to balance IP connections

and workload in a sysplex domain. In DNS terms, a sysplex is a subdomain that

you add to your DNS name space. Connection optimization extends the concept of

a “DNS host name” to clusters, or groups of server applications or hosts. Server

applications within the same group are considered to provide equivalent service.

Connection optimization uses load-based ordering to determine which addresses to

return for a given cluster.

Connection optimization registration

Server applications register with the MVS Workload Manager (WLM), which

quantifies the availability of server resources within a sysplex. The WLM must be

configured in goal mode on all hosts within the sysplex. TCP/IP stacks can also

register with the WLM to provide information on the started IP addresses, or static

Hostname
resolution

SYSPLEX

Distributed
routing

Cloned
listener
regions

Dynamic
DNS

Cloned CICS AORs

Client

IIOP

Figure 13. A CICS logical server. In this example, the logical server consists of a set of cloned “listener” regions and a

set of cloned AORs. Connection optimization by means of dynamic DNS registration is used to balance client

connections across the listener regions. Distributed routing is used to balance OTS transactions across the AORs.

160 Java Applications in CICS

definitions can be used if stacks do not support registration. When registering,

server applications provide the following information:

Group name

This is the name of a cluster of equivalent server applications in a sysplex. It is

the name within the sysplex domain that client applications use to access the

server applications. CICS uses the DNSGROUP parameter of the

TCPIPSERVICE resource definition as the group name to register with the

WLM.

Server name

This is the name of the server application instance. The server name must be

unique among all servers that share the same group name. A server application

instance can belong to more than one group. CICS registers with WLM using

the specific APPLID of the region as specified by the APPLID system

initialization parameter.

Host name

This is the host name of the TCP/IP stack on which the server application runs.

During startup, CICS calls the TCP/IP function gethostbyaddr to determine the

host name of the machine on which it is running, and passes it to the WLM for

registration.

Name resolution example

The following diagram shows an example CICSplex consisting of four CICS regions,

each executing on separate OS/390 machines within a sysplex.

 The MVS systems are named MVS1A, MVS1B, MVS1C and MVS1D, with the CICS

regions having APPLIDs of CICSPROD1, CICSPROD2, CICSDEV1 and CICSDEV2

The sysplex is defined to the DNS to have the name PLEX1 and each MVS

machine has a single IP address. The above diagram describes the names that a

client machine could use to access the CICS regions based on the following

resource definitions installed on each CICS:

v The region CICSPROD1 running on machine MVS1A has twoTCPIPSERVICE

definitions, one specifying a group_name of WWW and the second specifying a

group_name of IIOP1.

MVS1D

CICSDEV2

GR:WWWDEV

MVS1C

CICSDEV1

GR:IIOP1
GR:WWWDEV

MVS1A

CICSPROD1

GR:WWW
GR:IIOP1

GR:WWW

MVS1B

CICSPROD2

PLEX1.IBM.COM

WWW.PLEX1.IBM.COM

IIOP1.PLEX1.IBM.COM

WWWDEV.PLEX1.IBM.COM

Figure 14. CICSplex using DNS connection optimization

Chapter 13. The IIOP request flow 161

v The region CICSPROD2 running on machine MVS1B has one TCPIPSERVICE

definition, specifying a group_name of WWW.

v The region CICSDEV1 running on machine MVS1C has two TCPIPSERVICE

definitions, one specifying a group_name of IIOP1 and the second specifying a

group_name of WWWDEV.

v The region CICSDEV2 running on machine MVS1D has one TCPIPSERVICE

definition, specifying a group_name of WWWDEV.

The names that a client can access are:

v PLEX1.IBM.COM—returns the IP address of any of the machines in the sysplex.

v WWW.PLEX1.IBM.COM—returns either the address of MVS1A or MVS1B.

v IIOP1.PLEX1.IBM.COM—returns either the address of MVS1A or MVS1C.

v WWWDEV.PLEX1.IBM.COM—returns either the address of MVS1C or MVS1D.

You can also address individual CICS regions within a group by using their

APPLIDs (or server names). For example, CICSPROD1.WWW.PLEX1.IBM.COM

will return the address of MVS1A. This is equivalent to MVS1A.PLEX1.IBM.COM,

but the client does not have to know the machine on which the CICSPROD1 server

is running, only that CICSPROD1 is part of the WWW group.

Since these names dynamically become available as CICS regions register with the

WLM, adding more CICS regions and more MVS machines does not result in any

more administration. Using the generic host names (such as

WWWDEV.PLEX1.IBM.COM) decouples client applications from specific CICS

regions and MVS hosts, which enhances availability and scalability.

Resource definition for DNS connection optimization

The following TCPIPSERVICE options must be defined for TCP/IP ports that use

DNS connection optimization:

DNSGROUP

specifies the location parameter passed on the IWMSRSRG register call to

Workload Manager. The value may be up to 18 characters in length, with

trailing blanks ignored.

 This parameter is referred to as group_name by the OS/390 TCP/IP DNS

documentation. It is the generic name of a cluster of equivalent server

applications in a sysplex. It is also the name within the sysplex domain that

clients use to access the CICS TCPIPSERVICE.

 More than one TCPIPSERVICE is allowed to specify the same group name.

 The register call is made to WLM when the first service with this group name

specified is opened. Subsequent services with the same group name do not

cause more register calls to be made.

 The deregister action is dictated by the GRPCRITICAL attribute, as described

below. It is also possible to explicitly deregister CICS from a group by issuing

the master terminal (CEMT) or EXEC CICS command SET TCPIPSERVICE

DNSSTATUS DEREGISTERED, or by using the equivalent CICSPlex SM

command.

GRPCRITICAL

marks the service as a critical member of the DNS group such that this service

closing or failing causes a deregister call to be made to WLM for this group

name.

162 Java Applications in CICS

The default is NO, allowing two or more services in the same group to fail

independently and CICS still to remain registered to the group. Only when the

last service in a group is closed is the deregister call made to WLM, if it has not

already been done so explicitly.

 Multiple services with the same group name can have different grpcritical

settings. The services specifying GRPCRITICAL(NO) can be closed or fail

without causing a deregister. If a service with GRPCRITICAL(YES) is closed or

fails, the group is deregistered from WLM.

To implement DNS connection optimization for IIOP requests (including requests for

enterprise beans), the following CORBASERVER options must be defined:

v The HOSTNAME option of the CORBASERVER definition must specify a generic

host name. This generic hostname is the DNSGROUP value from the

TCPIPSERVICE definition, suffixed by the domain or subdomain name managed

by the nameserver on MVS. This domain name is established by the TCP/IP

administrator. For example, in the previous example, WWW.PLEX1.IBM.COM

could be used to route to CICSPROD1 and CICSPROD2.

v The CORBASERVER with the generic hostname (or the DJARS within it) must

be published to the nameserver.

The nameserver must be configured to allow it to look up and resolve the generic

host name.

Avoiding Domain Name System (DNS) problems

Important

To avoid difficulties in using nameservers, you should be aware of the following:

v Lookups for dynamic names should not be cached. If you use a client that

caches nameserver lookup results you cannot be certain that you continue to

work with the correct IP address. This might result in the client continuously

attempting to call a server region that has been closed, rather than obtaining the

address of another server region that has taken over the role previously fulfilled

by the other server.

v A problem can arise due to stress on the nameserver being used. Some lookups

succeed, others fail with a NameNotFoundException.

When the number of concurrent lookups becomes high, perhaps when a client or

bean does repeated lookups without caching, the likelihood of encountering one

of these nameserver “blips” increases. Possible measures to consider are:

– Install a machine of higher capacity to run the name server.

– Code your applications to recognize this possibility and to retry when this error

is encountered.

– Setup the MVS system so that the most commonly used addresses are

included in its /etc/hosts file. This bypasses the nameserver lookup for these

names and simply uses the address coded in the file.

– Rather than specify IP addresses by name, specify them by number.

(However, this solution is not advisable in a production environment.)

Authentication of IIOP requests

Authentication

is the process by which a service accurately establishes the authenticity of

a user making a request.

Chapter 13. The IIOP request flow 163

Identification

is the process by which the identity of a user is established. Typically, the

term user ID is used to denote the user’s identity; in Java parlance, the

term principal is used.

The two processes are related because, in many cases, the information used to

authenticate a user is also used for identification. For example, in a scheme that

uses a user ID and password, the user ID alone identifies the user, while the

combination of user ID and password authenticates the user.

Authentication is provided by one of the following mechanisms:

v Basic authentication

v SSL client certificate authentication

v Asserted identity authentication

See the CICS RACF Security Guide for more information.

For IIOP requests, you can identify the user in the following ways:

v Using SSL client authentication—see the CICS RACF Security Guide for more

information.

v If SSL client authentication does not provide a user ID, you can write a

user-replaceable IIOP security program to provide one. Specify the name of your

security program on the URM attribute of the TCPIPSERVICE definition for the

port. See “Using the IIOP user-replaceable security program” on page 191 for

more information.

v The client can supply a user ID directly. Typically this is done as part of the

authentication process.

You can identify users in this way when you use basic authentication with the

HTTP and ECI application protocols

v If none of these mechanisms provides a user ID, the CICS default user ID is

used.

The authentication and identification schemes are specified in the CORBASERVER

and TCPIPSERVICE resource definitions. Each CORBASERVER is associated with

one or more TCPIPSERVICE definitions; each TCPIPSERVICE supports a different

mechanism for authentication and identification:

v The ASSERTED attribute of the CORBASERVER names a TCPIPSERVICE that

supports inbound IIOP with asserted identity authentication.

v The BASIC attribute of the CORBASERVER names a TCPIPSERVICE that

supports inbound IIOP with basic authentication.

v The CLIENTCERT attribute of the CORBASERVER names a TCPIPSERVICE

that supports inbound IIOP with SSL client certificate authentication.

v The SSLUNAUTH attribute names a TCPIPSERVICE that supports inbound IIOP

with SSL encryption and no client authentication.

v The UNAUTH attribute names a TCPIPSERVICE that supports inbound IIOP with

no authentication.

Note:

1. To change the association between an installed CORBASERVER

definition and its TCPIPSERVICE definitions, you must discard and

reinstall the CORBASERVER definition.

2. If you use SSL encryption, or SSL client certificate authentication, you

must configure your CICS system to support SSL. See the CICS RACF

Security Guide.

164 Java Applications in CICS

|
|
|
|

|

|
|

|
|

|
|

An enterprise bean can use the getCallerPrincipal() method to obtain information

about the client which is contained in the certificate. See “Deriving distinguished

names” on page 340 for more details.

The derived USERID is passed with the IIOP request to the request processor, for

authentication of the request execution. If the request processor is executing in a

different CICS region, the transmission of the USERID follows CICS rules for

CONNECTION authentication.

The IIOP user-replaceable security program

This is an optional identification mechanism. It is not an authentication mechanism,

but a way to supply a CICS USERID. To use it, you must specify the name of your

security program on the URM option of the TCPIPSERVICE definition for the IIOP

port. If you do so, your security program is called by the IIOP request processor.

On invocation, the security program is primed with the value defined by the system

initialization parameter DFLTUSER (which defaults to CICSUSER), but can override

it. Before routing the IIOP request to a request processor, CICS checks with RACF

that the request receiver transaction is allowed to initiate work on behalf of the

USERID generated by the security program.

You can write your own program to supply a USERID, or use the sample security

program, DFHXOPUS. See “Using the IIOP user-replaceable security program” on

page 191.

CONNECTION authentication

The client USERID is transmitted from the listener region to the AOR only if

ATTACHSEC(IDENTIFY) is specified in the CONNECTION definition in the AOR.

See the CICS RACF Security Guide for more information.

IIOP users are recommended to specify SEC=YES and ATTACHSEC(IDENTIFY).

Chapter 13. The IIOP request flow 165

166 Java Applications in CICS

Chapter 14. Configuring CICS for IIOP

Important

If you are setting up a CICS EJB server (to support enterprise beans) we

recommend that you start at Chapter 17, “Setting up an EJB server,” on page 229,

which contains the specific requirements for enterprise bean support, rather than

here.

This chapter describes what you need to do to configure CICS as a CORBA

participant. You need to do this to run all IIOP-based applications, including

enterprise beans. However, the specific requirements for enterprise beans are not

addressed here. See Chapter 17, “Setting up an EJB server,” on page 229 for these

further requirements.

Configuration of CICS to support IIOP inbound and outbound requests requires

setup of the CICS system, and also setup of the host z/OS system environment.

Thus, to configure CICS as an IIOP server or client, set up the following host

software environment:

v A z/OS system at Version 1.4 or later, with UNIX Systems Services and HFS

v Language Environment configured and active

v CICS

v The IBM Software Developer Kit for z/OS, Java 2 Technology Edition, Version

1.4.2. This uses persistent reusable JVM technology. It is available from :

http://www.s390.ibm.com/java

You may also need:

v Java Naming and Directory Interface (JNDI) Version 1.2

v DB2 with Java Data Base Connectivity (JDBC) Version 1.2 extensions

Perform the following steps:

v “Setting up the host system for IIOP”

v “Setting up TCP/IP for IIOP” on page 180

v “Setting up CICS for IIOP” on page 181

You might also need to perform one of these steps:

v “Setting up an LDAP server” on page 170

v “Setting up a COS Naming Directory Server” on page 180

If you choose “Setting up an LDAP server” on page 170, you should read “The

LDAP namespace structure” on page 176.

Setting up the host system for IIOP

To support IIOP you need to perform the following system tasks:

1. “Giving CICS regions access to z/OS UNIX System Services and HFS

directories and files” on page 53. As part of this task, you will:

a. Give CICS access to the HFS directories and files that are needed to create

JVMs

b. Create and give CICS access to the HFS working directory that you have

specified for input, output, and messages from the JVMs

© Copyright IBM Corp. 1999, 2006 167

2. “Setting up JVM profiles and JVM properties files” on page 94. During this task,

you will:

a. Enable CICS to locate JVM profiles and their associated JVM properties

files.

b. Choose appropriate JVM profiles for your CORBA stateless objects and

enterprise beans.

c. If necessary, customize the JVM profiles and JVM properties files to fit the

requirements of your CICS region. (In the course of setting up CICS as a

CORBA server, you will need to add some further information to the JVM

properties files.)

Bear in mind when reading “Setting up JVM profiles and JVM properties files”

on page 94 that, for CORBA stateless objects and enterprise beans:

v The JVM profile used is that specified on the PROGRAM definition of the

request processor program.

v As for all CICS Java programs, the JVM properties file used is that specified

on the JVM profile.

v The default JVM profile, specified on the PROGRAM definition of the default

request processor program, is DFHJVMCD.

v The default JVM properties file, specified on the default JVM profile,

DFHJVMCD, is dfjjvmcd.props.

v If you plan to use the default JVM profile and JVM properties file with your

CORBA stateless object and enterprise bean requests, then you need only to

locate DFHJVMCD and dfjjvmcd.props and customize them for your CICS

region, as described in “Setting up JVM profiles and JVM properties files” on

page 94.

If you plan to use customized JVM profiles or properties files, you should still

make the changes to DFHJVMCD and dfjjvmcd.props that are required to fit

with the setup of your CICS region, because DFHJVMCD is used internally

by CICS, as well as being used for the default request processor program.

3. “Defining a shelf directory.” The shelf directory is used for deployed JAR files.

4. “Defining name servers.” This step is necessary only if you need to define name

servers for the purposes described in that procedure.

Defining a shelf directory

Every CORBASERVER definition must specify the name of a shelf directory on

HFS. When a DJAR definition is installed, CICS copies the deployed JAR file into a

sub-directory of the shelf root directory. (Also, when a PERFORM CORBASERVER

PUBLISH command is issued, the IOR of the CorbaServer is written to the

sub-directory.)

You can call your shelf directory anything you like. However, it’s recommended that

you create it somewhere under the /var directory. For example, you might create

an HFS directory called /var/cicsts/. Having created the shelf directory, you must

give the CICS region userid full access to it—read, write, and execute. See “Giving

CICS regions access to z/OS UNIX System Services and HFS directories and files”

on page 53 for guidance.

Defining name servers

You might need to define name servers for two purposes:

168 Java Applications in CICS

1. If you are using Domain Name system connection optimization, the listener

regions need to be configured to talk to the same name server on z/OS that the

MVS Workload Manager is configured to use.

You can define the name server to be used by TCP/IP by providing a SYSTCPD

DD statement in the CICS startup JCL for the listener region, as described in

CICS Transaction Server for z/OS Installation Guide.

2. A client application can locate an IIOP server application using object references

that have been registered in a name server. For example, a Java client can use

the JNDI interface to obtain a reference to a server application object such as

an instance of the home interface of an enterprise bean. Object references can

be registered in a name server from CICS by issuing the commands PERFORM

CORBASERVER PUBLISH, or PERFORM DJAR PUBLISH.

Enabling JNDI references

To enable your applications to obtain references using a JNDI Interface, set up a

name server that supports the Java Naming and Directory Interface (JNDI) V 1.2.

You can use either of the following:

v A Lightweight Directory Access Protocol (LDAP) server, such as the IBM

SecureWay Directory, which is shipped with the IBM SecureWay Security Server,

an optional feature of OS/390 and z/OS.

– IBM SecureWay Directory is available for Windows® 32 or System/390®.

– If you use an LDAP name server on your System/390, enterprise beans from

CICS and WebSphere can interoperate more readily in a shared namespace.

See “Setting up an LDAP server” on page 170.

v A Corba Object Services (COS) Naming Directory Service, such as that provided

with IBM WebSphere Application Server Version 6.

– COS Naming Servers run on an external machine.

– Any industry-standard COS Naming Serice that supports JNDI Version 1.2

can be used. Among others, you might choose the COS Naming Service

supplied with IBM WebSphere Application Server Advanced Edition for AIX®,

Version 3.5 and later.

See “Setting up a COS Naming Directory Server” on page 180

Specifying the location of the JNDI name server

To enable Java code running under CICS to issue JNDI API calls, and CICS to

publish references to the home interfaces of enterprise beans or IORs of stateless

CORBA objects, you must define the location of the name server.

Specify the Web address (URL) and TCP/IP port number of your name server using

the com.ibm.cics.ejs.nameserver property in your JVM properties files. The

supplied sample JVM profiles contain examples of how to do this, and the CICS

System Definition Guide has more detailed information.

Important:

1. You must specify the location of your name server on the

com.ibm.cics.ejs.nameserver property in all the JVM properties

files that are used by your CORBA stateless objects or enterprise

beans.

2. In particular, be sure to specify the location of your name server in

the dfjjvmcd.props properties file referenced by the DFHJVMCD

JVM profile. The DFHJVMCD profile is used by CICS-defined

Chapter 14. Configuring CICS for IIOP 169

programs, including the default request processor program and the

program that CICS uses to publish and retract deployed JAR files.

3. You also need to specify the location of your name server in the

JVM properties files referenced by any other JVM profiles that you

choose to use for CORBA stateless objects or enterprise beans.

These might be CICS-supplied sample JVM profiles or your own

JVM profiles. For CORBA stateless objects and enterprise beans,

the JVM profiles are named in the PROGRAM resource definitions

for your request processor programs.

4. For detailed information about defining the location of your name

server, see the CICS System Definition Guide.

Setting up an LDAP server

Either use an existing LDAP server configured for WebSphere, or configure a new

one.

If you have an existing LDAP server configured for WebSphere

If the nameserver that you have chosen for use by CICS has already been

configured for WebSphere/390, there is likely to be very little configuration needed

to enable CICS to use it.

Correct operation of the EJB support in CICS requires the chosen LDAP

namespace to be configured with a WebSphere System Namespace - the publish

and retract mechanisms of CICS both attempt to operate within a System

Namespace structure. However, once inside an EJB method or if executing a

regular Java transaction in CICS, you can communicate with any LDAP namespace

regardless of whether it supports a System Name Space.

When you use an LDAP server that is not configured with a WebSphere System

Namespace, use an alternative directory service, such as the SUN LDAP service

supplied as part of the IBM Developer Kit for the Java Platform 1.4.2 base, rather

than the WebSphere context factory supplied with CICS. See “SUN LDAP Context

Factory” on page 284 for details of using the SUN LDAP factory.

An understanding of the WebSphere naming structure that exists on the LDAP

server (see “The LDAP namespace structure” on page 176) makes it easier for you

or your LDAP administrator to determine suitable values for the six key properties a

CICS region needs to know: These are described in the CICS System Definition

Guide. The three security properties are only necessary if the LDAP namespace is

setup in a secure manner. On some LDAP servers it may be the case that all users

have write access and neither the principal or credentials properties need to be set

for the CICS region.

If the structure laid out in the namespace by WebSphere is suitable for your needs,

no further configuration is necessary.

The values for nameserver, containerdn and noderootrdn can be obtained by

understanding the System Name Space structure and observing the structure in

place on your chosen LDAP server, the final part of this section discusses how to

determine the property values if you are browsing an existing namespace.

Reasons for further configuration

You might need to proceed with LDAP server configuration, even though the server

is already configured for WebSphere/390, for any of the following reasons:

170 Java Applications in CICS

1. The security configuration needs changing to cope with the CICS regions being

introduced. See “The LDAP namespace structure” on page 176 and “Security

considerations” on page 177 for further information about the LDAP structure

and security issues.

2. CICS needs to run in a separate domain from WebSphere. If you are building a

new, separate, domain, WebSphere/390 and CICS will not easily be able to

locate each other’s enterprise beans. However, if you just intend to build a new

domain the only configuration steps you need to execute are Step 4. “Build the

legacyRoot node” and Step 5. “Apply security at CICS region level”.

3. CICS needs to run in an entirely different system name space structure on the

LDAP server. That is, CICS needs to have a containerdn that points to

somewhere other than the existing namespace root location on the server. In

this case, start the configuration procedure at Step 2. “Add a new suffix”. In this

case, it is not possible for CICS and WebSphere/390 systems working with the

differing containerdn settings to locate each other’s Enterprise Beans.

Configuring a new LDAP server

If you do not have an existing LDAP server configured for WebSphere/390, these

are the steps necessary to configure a new LDAP server:

1. Install the WebSphere naming schema

2. Add a new suffix

3. Build the system name space root node (containerdn)

4. Build the legacyRoot node below the name space root node (noderootrdn)

5. Optionally, apply security measures at the CICS region level.

In order to perform many of the steps you are likely to need access to a LDAP

principal that has suitable authority on your LDAP server to create new entries at

the root level.

When these steps are completed, you can determine the values of the system

properties that are needed in your JVM properties files to enable CICS to operate

with the LDAP server, and add these system properties to all the relevant JVM

properties files.

The steps in the following example enable you to configure an LDAP server with

the following values for the system properties in your JVM properties files:

com.ibm.cics.ejs.nameserver=ldap://wibble.ibm.com:389

com.ibm.ws.naming.ldap.containerdn=ibm-wsnTree=t1,o=WASNaming,c=US

com.ibm.ws.naming.ldap.noderootrdn=ibm-wsnName=legacyRoot,ibm-wsnName=PLEX2,

 ibm-wsnName=domainRoots

java.naming.security.authentication=simple

java.naming.security.principal=cn=CICSSystems,c=US

java.naming.security.credentials=secret

Similar values are given for the example system properties in the CICS-supplied

sample JVM properties files.

An example

There are notes throughout the configuration files that are used in this example

which guide you to tailor this set of properties to your particular needs. The one

most likely to change is noderootrdn, you will probably have some domain other

than PLEX2 as the grouping for your nodes - this value is input into the system at

Step 4. “Build the legacyRoot node”.

Chapter 14. Configuring CICS for IIOP 171

Notice that the example assumes a principal of ’cn=admin’ exists on the LDAP

server, with password ’adminpwd’ and that this principal is authorised to perform any

operation on the LDAP server.

1. Install the WebSphere naming schema.

If the LDAP server to be configured already has the WebSphere naming

schema, this step can be skipped. An LDAP name server configured for

WebSphere will already have this schema.

If it is any other LDAP server, install the WebSphere naming schema. The

schema is shipped with CICS as /usr/lpp/cicsts/cicsts31/utils/namespace/
WebSphereNamingSchema.ldif on HFS.

Note: The WebSphereNamingSchema.ldif file requires that RFC2256.ldif and

RFC2713.ldif be loaded first. This is because the definition of the

ibm-wsnEntry object class refers to the javaClassName attribute type.

When using the LDAP server on OS/390 or z/OS, these prerequisite

LDAP files are not loaded by default when the LDAP server is set up.

The LDAP server on OS/390 and z/OS needs to store the schema entries in the

back-end store to which they apply. This is achieved by adding a suffix to the dn

of each schema entry. The supplied WebSphereNamingSchema.ldif file does not

specify a suffix on the schema entries, so you must add one. For example, if

the suffix for the back-end store is “c=US”, you should change every instance of

“dn:cn=schema” in the ldif file to “dn:cn=schema,c=US”.

Apply the schema to the nameserver using the ldapmodify command :

ldapmodify -h <hostname>

 -p <portnumber>

 -D <authorized_principal>

 -w <authorized_principal_password>

 -f WebSphereNamingSchema.ldif

Where hostname and portnumber are those for the LDAP server and the

authorised principal is the distinguished name of a user with sufficient authority

on the nameserver to write entries.

The ldapmodify command must be available for your chosen LDAP server. If it

is not, consult your LDAP server documentation to determine how a new

schema (in ldif form) should be installed.

A specific example might be:

ldapmodify -h wibble.ibm.com

 -p 389

 -D cn=admin

 -w adminpwd

 -f WebSphereNamingSchema.ldif

2. Add a new suffix.

To build a new hierarchy in the namespace it is necessary to create a new base

distinguished name suffix. In this example configuration the suffix is c=US, and

the new hierarchy is to be ibm-wsnTree=t1,o=WASNaming,c=US. The

procedure for adding a suffix varies between the different LDAP providers. Your

LDAP documentation should indicate how to do this for your chosen provider.

As an example, here is the procedure for adding a suffix to a Secureway

installation on Windows 32:

v Start the LDAP Administration interface on a Web browser by typing

http://[hostname]/ldap, where hostname is the host name of the machine

where the LDAP directory is installed. The Administration logon window

displays.

172 Java Applications in CICS

v Type the administrator user ID (for example, in the format cn=root) and

password.

v Make sure that the LDAP server is running.

v In the left navigation pane, click the Settings folder, and then click Suffixes.

v Type the name of the Base DN to be used as the suffix (in our example,

″c=US″), and click Update.

v After the Base DN suffix is added, stop and restart the LDAP server.

The suffix now exists on your LDAP system

On an OS/390 or z/OS system, update the slapd.conf file to introduce your

new suffix to the system, then restart the nameserver. The extra line to add to

slapd.conf is:

suffix “c=US”

3. Build the system name space root node (containerdn)

An ldif file to build the root of the system name space (a node called the

containerdn) is supplied with CICS in utils/namespace/dfhsns.ldif. This file

contains comments describing how to tailor it for your environment. If it is used

without alteration, it creates a containerdn of ibm-wsnTree=t1,o=wasnaming,c=US

and also two CICS users on the LDAP namespace. The first CICS user has a

distinguished name of cn=CICSSystems,c=US and the second is

cn=CICSUser,c=US.

Two userids are defined. To understand how they are used, see “Security

considerations” on page 177.

The ldapmodify command must be available for your chosen LDAP server, if it

is not, consult your LDAP server documentation to determine how the root of

the system name space should be built..

This LDIF file can be applied to the LDAP server as follows:

ldapmodify-h <hostname>

 -p <portnumber>

 -D <authorized_principal>

 -w <authorized_principal_password>

 -f dfhsns.ldif

Where hostname and portnumber are those for the LDAP server and the

authorised principal is the distinguished name of a user with sufficient authority

on the nameserver to write entries.

A specific example is:

ldapmodify-h wibble.ibm.com

 -p 389

 -D cn=admin

 -w adminpwd

 -f dfhsns.ldif

4. Build the legacyRoot node below the namespace root node (noderootrdn)

The legacyRoot node in the namespace is the point where CICS is usually

configured to position itself when called to create a new InitialContext. For this

step , the script DFHBuildSNS is shipped with CICS in the directory

utils/namespace.

The syntax is :

DFHBuildSNS -ldapserver <server_url>

 [-node <node within the domain>]

 -domain <domain_name>

 -containerdn <Root of the namespace>

 -principal <principal authorised to write to the namespace>

 -credentials <password for that principal>

 [-force]

Chapter 14. Configuring CICS for IIOP 173

For example:

DFHBuildSNS -ldapserver ldap://wibble.ibm.com:389

 -domain PLEX2

 -containerdn ibm-wsnTree=t1,o=WASNaming,c=US

 -principal cn=admin

 -credentials adminpwd

(The -force option is only used with the -node flag, but neither are used in a

CICS environment.

5. Optionally apply the additional measures described in “Security at the CICS

region level” on page 178.

After running this script, the values of the system properties required in your JVM

properties files can be determined, and you can add them to all the relevant JVM

properties files.

Determining the values for the system properties and adding them to

your JVM properties files

The system properties that you can use in JVM properties files include six,

described below, that relate to the use of an LDAP namespace for JNDI. The CICS

System Definition Guide has full descriptions of each of these system properties.

v If you have just set up this LDAP namespace you will know the values that you

used to do so. Some of these are the ones required for setting the CICS

properties.

v If you are using or reusing an existing system namespace, ask your LDAP

administrator for suitable values for these properties.

v If you do not have access to the LDAP administrator or the values are

unavailable, you might be able to determine them, with the help of the following

information, by browsing the namespace.

It is unlikely that the security principal or credentials can be discovered by

browsing the namespace.

com.ibm.cics.ejs.nameserver

is the URL for the LDAP server being configured. In the preceding example

it is ldap://wibble.ibm.com:389

com.ibm.ws.naming.ldap.containerdn

is the value specified in the dfhsns.ldif file. The default is

ibm-wsnTree=t1,o=WASNaming,c=US if you did not tailor the ldif file. If you

are seeking this value by browsing an existing namespace, look for a node

of type ibm-wsnTree, the path to this node is a possible value for

containerdn.

com.ibm.ws.naming.ldap.noderootrdn

can be determined from the domain you specified on the DFHBuildSNS

call. In the example, the noderootrdn is ibm-wsnName=legacyRoot,ibm-
wsnName=PLEX2,ibm-wsnName=domainRoots. If you are seeking this

value by browsing an existing namespace, look for the path from the

chosen containerdn to the legacyRoot entry.

java.naming.security.authentication

is set to simple if CICS must authenticate itself to LDAP in order to bind (or

write) to it. Using the the defaults in the supplied scripts, authentication is

necessary because the dfhsns.ldif script removed default write access for

the ANYBODY group, and granted write access to the new principal

174 Java Applications in CICS

cn=CICSUser,c=US that it created. If CICS does not have to authenticate

itself to LDAP in order to write to it, do not set a value for this system

property.

Important: If you do specify this system property, you also need to specify

java.naming.security.principal and

java.naming.security.credentials. Since these hold the

UserID and password that CICS requires to access the secure

LDAP service, you need to give particular attention to the

access controls in force at your installation for the JVM

properties files, and any other copies of this information that

you have. You should ensure that the JVM properties files are

secure, with update authority restricted to system

administrators.

java.naming.security.principal

is a principal with the authority to bind to the namespace. You might choose

the system principal that has write access to the entire namespace if

security is not a real concern. However, it would be advisable to use at

least the cn=CICSUser,c=US distinguished name specified in dfhsns.ldif,

since that ID is only able to write to a particular area of the LDAP

namespace (the containerdn and below).

 If you want even tighter security, the principal could be

cn=CICSSystems,c=US. There is extra LDAP configuration to be performed

if you use this ID, see “Security considerations” on page 177’ for a full

discussion of CICS LDAP security configuration.

java.naming.security.credentials

is the password for the principal. The default if you did not tailor dfhsns.ldif.

is secret.

When you have determined the values of these system properties, you need to

specify them in all the JVM properties files that are used by CORBA applications or

enterprise beans.

In particular, be sure to specify them in the dfjjvmcd.props properties file

referenced by the DFHJVMCD JVM profile. The DFHJVMCD profile is used by

CICS-defined programs, including the default request processor program and the

program that CICS uses to publish and retract deployed JAR files.

You also need to specify these system properties in the JVM properties files

referenced by any other JVM profiles that you choose to use for CORBA stateless

objects or enterprise beans. These might be CICS-supplied sample JVM profiles or

your own JVM profiles. For CORBA stateless objects and enterprise beans, the

JVM profiles are named in the PROGRAM resource definitions for your request

processor programs.

The only JVM properties file that never needs to include this information is a JVM

properties file that you are only using for the master JVM that initializes the shared

class cache, because this JVM is not used to run applications. The CICS-supplied

sample JVM properties file for the master JVM is dfjjvmcc.props.

The CICS System Definition Guide tells you the rules for coding system properties

in a JVM properties file.

Chapter 14. Configuring CICS for IIOP 175

The LDAP namespace structure

The LDAP namespace structure used by WebSphere Application Server Version 4

for z/OS and OS/390, is a convenient structure for use in a CICS environment.

Note: WebSphere Application Server Version 5 and later use a COS Naming

Server by default and support LDAP only for backwards compatibility with

WebSphere Application Server Version 4.

There are two important nodes in the LDAP namespace structure used by

WebSphere, the container root, and the legacy root.

The container root

The container root is a node of type ibm-wsnTree. By default, this is called:

ibm-wsnTree=t1, o=wasnaming, c=us However, this is customisable by changing the

bboldif.cb file shipped with WebSphere.

The legacy root

The legacy root is a node of type ibm-wsnName some way below the container root

. A typical name for this might be: ibm-wsnName=legacyRoot,ibm-
wsnName=PLEX2,ibm-wsnName=domainRoots,ibm-
wsnTree=t1,o=WASNaming,c=us The names legacyRoot and domainRoots are

fixed. The only variable is the middle name, in this example PLEX2.

There may be several legacyRoot nodes, each with a different name. Each of these

is a ″domain″. The WebSphere Application Server for z/OS configuration maps a

domain to a sysplex. It is configured when the sysplex name is entered into the

customisation dialog when WebSphere Application Server for z/OS is installed.

Domains

A domain contains a number of servers. In WebSphere Application Server for z/OS,

each server has a node below legacyRoot, for example a server called BBOSV1

would have a name ibm-wsnName=BBOSV1,ibm-wsnName=PLEX2 relative to the

legacy root, and the objects it publishes would be below this node.

When CICS is configured to use the same LDAP server as WebSphere, each CICS

CorbaServer has a node directly below legacyRoot. So if a CorbaServer has a JNDI

prefix of CICS1, there will be a node ibm-wsnName=CICS1 relative to the legacy

root, and CICS publishes the CorbaServer’s objects below this node. When a new

InitialContext is created in WebSphere Application Server for z/OS, or in CICS

configured as above, the InitialContext will be based on the legacyRoot node. This

makes it easy for enterprise beans in CICS to look up objects published by

WebSphere, and for enterprise beans or servlets in WebSphere to look up objects

published by CICS.

Note: Any JNDI sub-context below a CICS region’s initial JNDI context (which is

typically the legacyRoot node) may be transient. This is the case if CICS has

write access to the initial context node.

A CorbaServer’s JNDI sub-context is specified on the JNDIPREFIX option of

the CORBASERVER definition. CICS creates the sub-context (if it has the

necessary write permission and the sub-context does not already exist in the

name space structure) when an enterprise bean is published from the

CorbaServer. However, if all the enterprise beans in the CorbaServer are

176 Java Applications in CICS

retracted, CICS may delete the sub-context from the name space structure.

Where multiple CorbaServers share part of a prefix hierarchy, CICS never

removes contexts that are still in use by any of them. But if the contexts in

the prefix are empty they are removed, as far back as the initial context.

If you want to protect the top-level node of the sub-context hierarchy from

deletion, do not give CICS write access to the initial context node. (This

means that you must create the top-level node of the sub-context manually.)

If you want to protect several higher levels of the sub-context hierarchy, give

CICS write permission only to the lower levels. (This means that you must

create the higher-level nodes of the sub-context manually.) For more

information, see “Security at the CICS region level” on page 178.

Versions of WebSphere Application Server for distributed platforms have a similar

concept of domain, but that concept does not relate to a sysplex.

Nodes

There is another concept, that of a node. A domain represents a number of nodes,

and you can navigate your way to a domain by knowledge of the nodename rather

than the domain name. Thus a node is a sort of alias for a domain.

Nodes are used in versions of WebSphere Application Server for distributed

platforms, but not in WebSphere Application Server for z/OS and OS/390. They are

not used by CICS. However, part of the structure for support of nodes is built when

you set up a new LDAP server for use by CICS. Since WebSphere Application

Server for z/OS and OS/390 does not use nodes, the nodename is an optional

parameter to the DFHBuildSNS utility, which under CICS builds the system name

space.

Security considerations

If you specified that CICS must authenticate itself to LDAP in order to write to it, by

coding the system property java.naming.security.authentication=simple in your

JVM properties files, you now have a choice between

v “Security at the containerdn level” on page 178, or

v “Security at the CICS region level” on page 178.

To help you decide, a very simplified view of part of the LDAP namespace is shown

in Figure 15 on page 178.

Chapter 14. Configuring CICS for IIOP 177

If you use security at the containerdn level, CICS has write access to containerdn

and all nodes below it. This allows CICS, or a CICS application using the JNDI

interfaces, to write to all these nodes, including those that belong to WebSphere

Application Server for z/OS and OS/390. If you use security at the CICS region

level, then CICS and CICS applications are only able to write to the specific CICS

nodes in the tree.

Security at the containerdn level

To use security at the containerdn level, use the CICS administration principal

(cn=CICSUser,c=us) created by the dfhsns.ldif file (see Step 3. “Build the system

name space root node”). Give this principal access to the containerdn node when

you create it. Ensure that this userid and its password appear in the system

properties java.naming.security.principal and java.naming.security.credentials in your

JVM properties files.

Security at the CICS region level

Give this principal access to the containerdn node when you create it. Ensure that

this userid and its password appear in the system properties

java.naming.security.principal and java.naming.security.credentials in your JVM

properties files.

To use security at the CICS region level, use the CICS runtime principal

(cn=CICSSystems,c=US) created by the dfhsns.ldif file, see Step 3. “Build the

system name space root node”. This involves some additional steps. Ensure that

this userid and its password appear in the system properties

java.naming.security.principal and java.naming.security.credentials in your JVM

properties files. Additionally, as CICS does not have write access to legacyRoot,

CICS will be unable to create its own node (called CICS server 1 in Figure 15), so

you must do it manually, and then give the CICS runtime principal

(cn=CICSSystems,c=US) write access to this node. This is described below.

To configure a CICS region in this way and then use the new subcontext:

v Choose a suitable subcontext, we shall call it cicsabcd.

v Create that subcontext below the legacyRoot for use by a CICS system (see

“Creating a subcontext” on page 179).

v Ensure the CICS runtime principal can write to it.

containerdn

legacyRoot

ObjectObject ObjectObject ObjectObject ObjectObject

WAS server 1 WAS server 2 CICS server 1CICS server 1 CICS server 2

Figure 15. Simplified view of part of an LDAP namespace

178 Java Applications in CICS

v Specify the CICS runtime principal and credentials using the system properties

java.naming.security.principal and java.naming.security.credentials in the JVM

properties files that are in use in the region.

v Ensure that any CORBASERVER definitions created in the CICS region have

JNDIPREFIX attributes which start with cicsabcd. This means that references

which they publish, are published under the new subcontext cicsabcd under

legacyRoot.

Security configuration is now complete. A user browsing the LDAP namespace is

able to locate this context cicsabcd below legacyRoot, and relate it to the

CORBASERVER definitions.

Creating a subcontext: To create the subcontext cicsabcd below the legacyRoot

in the LDAP namespace, and to set suitable Access Control Lists (ACLs) for it, use

the LDIF file supplied with CICS in utils/namespace/dfhNewCICSSubcontext.ldif.

v The LDIF file contains comments to explain the steps involved, and the values

that are likely to need altering for a particular LDAP System Name Space

configuration.

v The LDIF file can be applied to the LDAP server using the ldapadd command:

Ldapadd -h wibble.ibm.com

 -p 389

 -D cn=CICSUser,c=us

 -w CICSUserpwd

 -f dfhNewCICSSubcontext.ldif

where CICSUserpwd is the password for CICSuser established when CICSuser was

set up.

This command needs to be run with a principal (and credentials) that can write to

the legacyRoot node. In the example we are using, that is cn=CICSUser,c=US id,

which has been created for this purpose.

v The most important line of the LDIF file to change is the distinguished name of

the node being created, assuming the LDAP System Name Space was

configured using all the default scripts supplied with CICS, the distinguished

name is:

ibm-wsnName=cicsabcd,ibm-wsnName=legacyRoot,ibm-wsnName=PLEX2,

ibm-wsnName=domainRoots,ibm-wsnTree=t1,o=wasnaming,c=US

v The rest of the LDIF sets the Access Control Lists appropriately for the new

node.

v The comments in this LDIF file are important, they explain other things that you

might have to consider. For example, there might be some additional ACL entries

that are appropriate in your installation depending on which principals currently

have write access to the System Name Space.

v Once the LDIF is applied, the new node exists on the LDAP server below the

legacyRoot, and the Access Control Lists are set such that the CICS runtime

principal has write access.

Other considerations: You might want to consider the following:

v You could create several different CICS runtime principals for different regions,

and so reduce scope of the access granted to each principal.

v If you are using this process within an existing system name space, there may

be other principals (and credentials) in use. They need to be given write access

to the new subcontext created by dfhNewCICSSubcontext. The comments in the

dfhNewCICSSubContext LDIF file discuss ways to check if this is so, and how to

tailor the LDIF file appropriately before executing the ldapadd.

Chapter 14. Configuring CICS for IIOP 179

Setting up a COS Naming Directory Server

The most convenient way to set up a COS Naming Directory Server is to use IBM

WebSphere Application Server running on an external Windows NT® or Windows

2000 machine. Follow the installation instructions supplied with it.

Setting up TCP/IP for IIOP

To configure a CICS region as a TCP/IP Listener to accept and send IIOP requests,

you need to make the following definitions in CICS:

1. In the CICS startup jobstream for every CICS region where the Listener is

required, set the following system initialization parameters:

v IIOPLISTENER to YES

v TCPIP to YES

2. Define and install TCPIPSERVICE resource definitions in the Listener region for

every port that the Listener will monitor, specifying:

v PROTOCOL(IIOP)

v The port or IP address on which CICS will listen for incoming IIOP requests

Note: If the SSL connection fails, some clients will attempt to retry on an

associated non-SSL port. CICS TS defines this port to be SSL port–1.

You should ensure that this port (SSL port–1) is not defined for any

other purpose. The well-known IIOP ports are 683(non-SSL) and

684(SSL).

v The CICS transaction to start when a request arrives. For an IIOP service,

this should be set to the CICS IIOP Request Receiver, CIRR.

v The level of Secure Sockets Layer (SSL) authentication to be used.

v The DNSGROUP name if DNS connection optimization is to be used. See

“Resource definition for DNS connection optimization” on page 162

v The name of the user-replaceable program to be called to associate this

request with a CICS USERID for security or workload management purposes.

If omitted, no user-replaceable program is called. A sample user-replaceable

program, DFHXOPUS, is supplied—see “Using the IIOP user-replaceable

security program” on page 191.

For example:

DEFINE TCPIPSERVICE(IIOPNSSL) GROUP(DFH$IIOP)

 DESCRIPTION(IIOP TCPIPSERVICE with no SSL support)

 URM(DFHXOPUS) BACKLOG(5) PORTNUMBER(683)

 TRANSACTION(CIRR) SSL(NO)

 STATUS(CLOSED) PROTOCOL(IIOP)

Important: In a multi-region server, the TCPIPSERVICE definitions must be

installed in all the regions (both listeners and AORs) of the logical

server. In the listener regions, the IIOPLISTENER system

initialization parameter must be set to ’YES’. In the AORs, it must

be set to ’NO’. In a combined listener/AOR, it must be set to ’YES’.

See the CICS Resource Definition Guide for the full syntax of the

TCPIPSERVICE resource definition.

Using DNS connection optimization

To use DNS connection optimization with IIOP, you need to define a DNSGROUP

name in the IIOP TCPIPSERVICE resource definition. All CICS regions providing

180 Java Applications in CICS

the same TCPIPSERVICE, with the same DNSGROUP name are registered with

MVS Workload Management (WLM) with the same group-name, as candidates for

client requests requiring the same service. This registration also includes the

region’s Host name, obtained by the TCP/IP function gethostbyaddr, and a unique

Server name, which CICS obtains from the specific APPLID of the region as

specified by the APPLID system initialization parameter.

Listener regions need to be configured to talk to the same DNS name server on

z/OS that the MVS Workload Manager is configured to use. You can define the

name server to be used by TCP/IP by providing a SYSTCPD DD statement in the

CICS startup JCL, as described in CICS Transaction Server for z/OS Installation

Guide.

Note:

1. Both the client and the CICS server must use the same TCP/IP name

server.

2. The name server must be able to perform a reverse look-up, that is, it

must be able to translate the IP address of the server into a full

hostname.

Setting up CICS for IIOP

To support IIOP you need to perform the following CICS tasks:

v “Defining CICS start-up jobstream”

v “Defining CICS resources” on page 183

Defining CICS start-up jobstream

The following parameters must be defined in the start-up jobstream for a CICS

region that supports IIOP:

JCL parameter

REGION

1000M minimum is recommended

CICS system initialization parameters

EDSALIM

500M minimum is recommended.

IIOPLISTENER

v Specify IIOPLISTENER=YES if the CICS region is an IIOP listener

region, or a combined listener and application owning region (AOR).

v Specify IIOPLISTENER=NO if the CICS region is an IIOP application

owning region. TCPIPSERVICE definitions installed in the region that

specify PROTOCOL(IIOP) cannot be opened.

JVMPROFILEDIR

Set to the HFS directory containing the JVM profiles that you are using

for your applications. “Enabling CICS to locate the JVM profiles and

JVM properties files” on page 94 tells you how to do this.

KEYRING

Required if you are using Secure Sockets Layer (SSL) authentication

with certificates registered to RACF.

Chapter 14. Configuring CICS for IIOP 181

MAXJVMTCBS

Specify the number of JVMs that your CICS region can support. The

CICS Performance Guide tells you how to work out an appropriate

setting for the MAXJVMTCBS system initialization parameter.

TCPIP Set to YES.

DD statements for CICS datasets

Sample local VSAM data set definitions are provided in the CICS-supplied RDO

group DFHEJVS. These data sets must be authorized with RACF for UPDATE

access. See the CICS RACF Security Guide.

DFHEJDIR

A recoverable shared file containing the request streams directory. This

can be a VSAM file or a coupling facility data table. CICS supplies

sample JCL to help you create this file, in the DFHDEFDS member of

the SDFHINST library.

Note: In most cases, the RECORDSIZE parameter in the supplied JCL

should not require modification. However, if you intend to install

more than 40 CorbaServers in your logical EJB/CORBA server,

see “Specifying the RECORDSIZE of DFHEJDIR and

DFHEJOS.”

DFHEJOS

A non-recoverable shared file used by CICS when CorbaServers are

installed and to store stateful session beans that have been passivated.

This can be a VSAM file or a coupling facility data table. CICS supplies

sample JCL to help you create this file, in the DFHDEFDS member of

the SDFHINST library.

Note: In most cases, the RECORDSIZE parameter in the supplied JCL

should not require modification. However, if you intend to install

more than 40 CorbaServers in your logical EJB/CORBA server,

see “Specifying the RECORDSIZE of DFHEJDIR and

DFHEJOS.”

Specifying the RECORDSIZE of DFHEJDIR and DFHEJOS

The maximum number of CorbaServers that can be defined to a CICS EJB/CORBA

logical server is controlled by the RECORDSIZE values of the request streams

directory file, DFHEJDIR, and the EJB object store file, DFHEJOS.

The RECORDSIZE attributes in the supplied JCL and FILE definitions for

DFHEJDIR specify a RECORDSIZE of 1017 bytes. The RECORDSIZE attributes in

the supplied JCL and FILE definitions for DFHEJOS specify a RECORDSIZE of

8185 bytes. Normally, these values should not require modification. Only if you

intend to install more than 40 CorbaServers in your logical EJB/CORBA server do

you need to change these values.

Both DFHEJDIR and DFHEJOS contain a control record which is made up of a

24-byte header and a repeating group of CorbaServer control fields, each 24 bytes

long. The default length of 1017 for DFHEJDIR effectively limits the logical server to

41 CorbaServers: (1 + 41) * 24 = 1008 bytes. If you need to install more

CorbaServers than this into your logical server, calculate the required

RECORDSIZE for DFHEJDIR like this:

1. Multiply the required number of CorbaServers by 24.

2. Add 24 bytes for the control record header. This gives the absolute minimum

record size.

182 Java Applications in CICS

3. Round up the last value to the next multiple of 512 to get the minimum control

interval size.

4. Subtract 7 to get the value for the RECORDSIZE parameter.

Make the RECORDSIZE value for DFHEJOS greater than that of DFHEJDIR. Too

short a length will result in collisions when passivating beans. (The supplied

definitions make the RECORDSIZE of DFHEJOS almost 8 times that of

DFHEJDIR.)

Note: The sample JCL for DFHEJDIR and DFHEJOS is in the DFHDEFDS

member of the SDFHINST library. Sample FILE resource definitions for

DFHEJDIR and DFHEJOS are in the DFHEJVS RDO group, with sample

coupling facility FILE definitions in the DFHEJCF group, and sample VSAM

RLS FILE definitions in the DFHEJVR group.

Defining CICS resources

The following CICS resources must be defined and installed. You can define CICS

resources online using CEDA (see the CICS Resource Definition Guide); from a

CICS application using EXEC CICS CREATE (see the CICS System Programming

Reference); using the DFHCSDUP offline utility (see the CICS Operations and

Utilities Guide); or by using CICSPlex SM (see the CICSPlex System Manager

Concepts and Planning).

FILE

Provide and install FILE resource definitions for the following files required by

CICS:

The “EJB Directory”, DFHEJDIR

is a file containing a request streams directory; the directory is used in

the routing of method requests for both enterprise beans and CORBA

stateless objects. You must define DFHEJDIR as recoverable.

The “EJB Object Store”, DFHEJOS

is a file of stateful session beans that have been passivated. (It is also

used when CorbaServers are installed.) You must define it as

non-recoverable.

In a single-region CICS EJB/CORBA server, it is acceptable to define

DFHEJDIR and DFHEJOS as local files. However, in a multiple-region CICS

EJB/CORBA server:

v DFHEJDIR must be shared by all the regions (listeners and AORs) in the

server.

v DFHEJOS must be shared by all the AORs in the server.

 To enable DFHEJDIR and DFHEJOS to be shared across multiple regions, you

can define them in one of the following ways:

v As remote files in a file-owning region (FOR)

v As coupling facility data tables

v Using VSAM RLS.

 There are sample FILE definitions for DFHEJDIR and DFHEJOS in the

CICS-supplied RDO group, DFHEJVS. There are sample coupling facility FILE

definitions for DFHEJDIR and DFHEJOS in the CICS-supplied RDO group,

DFHEJCF. There are sample VSAM RLS FILE definitions for DFHEJDIR and

Chapter 14. Configuring CICS for IIOP 183

DFHEJOS in the CICS-supplied RDO group, DFHEJVR. (DFHEJVS, DFHEJCF,

and DFHEJVR are not included in the default CICS startup group list,

DFHLIST.)

Note: In most cases, the values of the RECORDSIZE attributes in the supplied

FILE definitions should not require modification. However, if you intend to

install more than 40 CorbaServers in your logical EJB/CORBA server,

see “Specifying the RECORDSIZE of DFHEJDIR and DFHEJOS” on

page 182.

 For reference information about FILE definitions, see the CICS Resource

Definition Guide.

TRANSACTION and PROGRAM

 CORBA stateless objects and enterprise beans don’t have PROGRAM resource

definitions as such. The PROGRAM resource definition that is relevant to a

CORBA stateless object or enterprise bean is that for the request processor

program.

 Required default TRANSACTION and PROGRAM definitions for the

CICS-supplied request receiver and request processor programs are in

resource group DFHIIOP, which is included in the default CICS startup group

list, DFHLIST.

 Normally, you should not need to replace the default TRANSACTION and

PROGRAM definitions for the request receiver (CIRR and DFHIIRRS,

respectively). This is the definition of CIRR in DFHIIOP:

 DEFINE TRANSACTION(CIRR) GROUP(DFHIIOP)

 PROGRAM(DFHIIRRS) TWASIZE(0)

 PROFILE(DFHCICST) STATUS(ENABLED)

 TASKDATALOC(ANY) TASKDATAKEY(USER)

 RUNAWAY(SYSTEM) SHUTDOWN(ENABLED)

 PRIORITY(1) TRANCLASS(DFHTCL00)

 DTIMOUT(NO) TPURGE(NO)

 SPURGE(YES) ISOLATE(NO)

 RESSEC(NO) CMDSEC(NO)

 RESTART(NO)

 DESCRIPTION(Default CICS IIOP Request Receiver transaction)

One reason for creating your own TRANSACTION and PROGRAM definitions

for the request processor program is to specify a JVM profile other than the

default. The name of the JVM profile to be used is specified on the

JVMPROFILE option of the PROGRAM definition for the request processor

program. The default PROGRAM definition for the request processor (DFJIIRP

in DFHIIOP) specifies the JVM profile DFHJVMCD. This is the definition of

DFJIIRP in DFHIIOP:

 DEFINE PROGRAM(DFJIIRP) GROUP(DFHIIOP)

 DESCRIPTION(CICS IIOP Request Processor)

 JVM(YES)

 JVMCLASS(com.ibm.cics.iiop.RequestProcessor)

 JVMPROFILE(DFHJVMCD)

 LANGUAGE(LE370)

 RELOAD(NO)

 EXECKEY(USER)

 RESIDENT(NO)

 USAGE(NORMAL)

 USELPACOPY(NO)

 STATUS(ENABLED)

 CEDF(NO)

 DATALOCATION(ANY)

 DYNAMIC(NO)

184 Java Applications in CICS

Note: The CEDF attribute can be set to YES for debugging purposes. See

“Using EDF with enterprise beans” on page 289.

 If you do create your own PROGRAM definition for the request processor, you

can provide one with any name, but the JVMCLASS parameter must be set to

com.ibm.cics.iiop.RequestProcessor. Choose another JVM profile for the

request processor to use, and specify the name of your JVM profile on the

JVMPROFILE option. CICS supplies sample JVM profiles in the

/usr/lpp/cicsts/cicsts31/JVMProfiles HFS directory (where cicsts31 is the

value of the CICS_DIRECTORY variable used by the DFHIJVMJ job during

CICS installation). “Setting up JVM profiles and JVM properties files” on page

94 tells you how to locate, choose and customize JVM profiles.

TCPIPSERVICE

Provide and install TCPIPSERVICE resource definitions to configure the CICS

Listener to receive IIOP requests and call the IIOP request receiver. The

TCPIPSERVICE resource definition also specifies load-balancing and security

options. See “Setting up TCP/IP for IIOP” on page 180.

 CICS supplies, in resource group DFH$EJB, a TCPIPSERVICE definition for

use with the EJB installation verification program (IVP) and the EJB “Hello

World” sample application. If you are setting up a CICS EJB server, we suggest

that you follow the step-by-step example of how to configure this definition in

“Actions required on CICS” on page 231.

CORBASERVER

Provide and install a CORBASERVER resource definition. Note that the

DFHEJDIR file must be defined, installed, and available before a

CORBASERVER can be installed.

 CICS supplies, in resource group DFH$EJB, a CORBASERVER definition for

use with the EJB IVP program and the EJB “Hello World” sample application. If

you are setting up a CICS EJB server, we suggest that you follow the

step-by-step example of how to configure this definition in “Actions required on

CICS” on page 231.

REQUESTMODEL

Provide and install REQUESTMODEL resource definitions to enable the request

receiver to match the incoming request to a CICS transaction, to define

execution parameters that are used if a new request processor instance is

created to handle the request. The default TRANSID on REQUESTMODEL

definitions is CIRP, which specifies the default request processor program

DFJIIRP. If you choose to use your own TRANSACTION definition, you must

define and install it; it must specify a PROGRAM definition with the JVMCLASS

parameter set to com.ibm.cics.iiop.RequestProcessor. See “Obtaining a

CICS TRANSID” on page 192.

Note:

1. You need to provide REQUESTMODEL definitions only if the default

TRANSID, CIRP, is unsuitable, or if you want to segregate your IIOP

workload by transaction ID (for monitoring purposes, for example).

2. The TRANSACTION definition for CIRP specifies DYNAMIC(NO). If

you want to use dynamic routing of method requests for enterprise

beans and CORBA stateless objects, you must provide one or more

TRANSACTION definitions that specify DYNAMIC(YES), and specify

them on your REQUESTMODEL definitions.

3. After the CorbaServer is operational, you can use the CREA

CICS-supplied transaction to display the transaction IDs associated

Chapter 14. Configuring CICS for IIOP 185

with particular enterprise beans and bean-methods in the

CorbaServer. You can change the transaction IDs, apply the

changes, and save the changes to new REQUESTMODEL

definitions. This is an easier method than building REQUESTMODEL

definitions by hand.

4. In a multi-region CICS logical server, it’s recommended that you

install your REQUESTMODEL definitions on the AORs as well as the

listener regions—see Figure 16 on page 187. The REQUESTMODEL

definitions in the AORs are required for outbound requests to local

objects. If a CORBA stateless object or enterprise bean makes a call

to another object, and that object is available on the local AOR, CICS

does not send the request to a listener region. Instead, it either runs

the called method in the current task (“tight loopback”) or starts

another request processor in the local AOR (“normal loopback”).

Where normal loopback is used, it’s preferable that the new request

processor task should use the same REQUESTMODEL as that used

for the call to the first object—otherwise, unpredictable results may

occur. If your CORBA stateless objects and enterprise beans make

no outbound calls, the REQUESTMODELs on the AOR are not

strictly required.

DJAR

Provide and install DJAR resource definitions for any enterprise beans.

Note: DJAR definitions are typically created and installed by the CICS

scanning mechanism (see the CICS Resource Definition Guide).

Figure 16 on page 187 shows the RDO definitions required to define a CICS logical

server. It shows which definitions are required in the listener regions, which in the

AORs, and which in both.

186 Java Applications in CICS

CORBASERVERs
CorbaServer execution
environments

Stateful session
bean store file

DFHEJOS

DFHEJDIR
Request stream
directory file

Cloned CICS AORsCloned CICS listener regions

COMMON DEFINITIONS

REQUESTMODELs

TCPIPSERVICEs

AOR DEFINITIONSLISTENER DEFINITIONS

CICS logical EJB server

Deployed
JAR files

DJARs

SIT
IIOPLISTENER=YES

SIT
IIOPLISTENER=NO

Figure 16. Resource definitions in a CICS logical server. The picture shows which definitions are required in the

listener regions, which in the AORs, and which in both.

Chapter 14. Configuring CICS for IIOP 187

188 Java Applications in CICS

Chapter 15. Processing IIOP requests

The CICS request receiver derives a CICS USERID and TRANSID that establish

CICS execution parameters for the request, before passing control to the IIOP

request processor to invoke the target methods.

Obtaining a CICS user ID

For IIOP requests, you can authenticate and identify the the user in the following

ways:

1. Using Secure Sockets Layer (SSL) client authentication. See the CICS RACF

Security Guide for more information.

2. If SSL authentication does not provide a user ID, you can use the IIOP

user-replaceable security program to provide one. Specify the name of your

IIOP security program on the URM attribute of the TCPIPSERVICE definition for

the port. See “Using the IIOP user-replaceable security program” on page 191

for more information.

3. If neither of these mechanisms provides a user ID, the default user ID is used.

If you specify the name of a security program on the TCPIPSERVICE definition, but

omit the PROGRAM resource definition for it, CICS tries to build a resource

definition for it (autoinstall); if this fails, or your security program does not return a

USERID, CICS uses the user ID associated with the SSL client certificate, if there is

one. Otherwise, the default user ID is used.

The following communications area is passed to the user-replaceable program. This

structure is based on the format of an IIOP message defined in The Common

Object Request Broker: Architecture and Specification obtainable from the OMG

web site at:

http://www.omg.org/library

 Offset

Hex

 Type Len Name

 (0) STRUCTURE 80 sXOPUS

 (0) CHARACTER 4 standard_header

 (4) FULLWORD 4 pIIOPData

 (8) FULLWORD 4 lIIOPData

 (C) FULLWORD 4 pRequestBody

 (10) FULLWORD 4 lRequestBody

 (14) CHARACTER 4 corbaserver

 (18) FULLWORD 4 pBeanName

 (1C) FULLWORD 4 lBeanName

© Copyright IBM Corp. 1999, 2006 189

Offset

Hex

 Type Len Name

 (20) FULLWORD 4 BeanInterfaceType

 (24) FULLWORD 4 pModule

 (28) FULLWORD 4 lModule

 (2C) FULLWORD 4 pInterface

 (30) FULLWORD 4 lInterface

 (34) FULLWORD 4 pOperation

 (38) FULLWORD 4 lOperation

 (3C) CHARACTER 8 userid

 (44) FULLWORD 4 transid

 (48) FULLWORD 4 flag_bytes

 (4C) FULLWORD 4 return_code

 (50) FULLWORD 4 reason_code

standard_header

contains a standard header with the following format:

function

1–byte field set to X’00’

domain

2–character field containing II

* 1–character reserved field

pIIOPData

contains the address of the first megabyte of the unconverted IIOP buffer.

lIIOPData

contains the length of the unconverted IIOP buffer.

pRequestbody

contains the address of the incoming IIOP request.

lRequestbody

contains the length of the incoming IIOP request.

corbaserver

contains the name of the CorbaServer associated with this request.

pBeanName

contains a pointer to the EBCDIC bean name.

lBeanName

contains the length of the bean name.

190 Java Applications in CICS

BeanInterfaceType

contains an enumerated value. X’00’ indicates home; X’01’ indicates remote.

pModule

contains a pointer to the EBCDIC Module name.

lModule

contains the length of the Module name.

pInterface

contains a pointer to the EBCDIC Interface name.

lInterface

contains the length of the Interface name.

pOperation

contains a pointer to the EBCDIC Operation name.

lOperation

contains the length of the Operation.

userid

contains the input and output user ID. The output user ID must be exactly 8

characters long. If it is shorter than 8 characters it must be padded with blanks.

transid

contains the input TRANSID

Flag_bytes

contains the following indicators::

littleEndian

1–byte field showing byte-order, where 1 indicates TRUE and 0

indicates FALSE

sslClientUserid

1–byte field showing the derivation of the USERID if SSLTYPE

CLIENTAUTH is specified in the TCPIPSERVICE definition, where:

0 USERID set from DFLTUSER

1 USERID set from SSL CERTIFICATE

* 2–byte reserved field

return_code

contains the return code.

reason_code

contains the reason code.

RETNCODE is set to RCUSRID (X’01’) if a USERID is being returned. The

user-replaceable program should return all other fields unchanged, or unpredictable

results will occur.

See the CICS Customization Guide for information about installing user-replaceable

programs.

Using the IIOP user-replaceable security program

You may optionally provide an IIOP security program to examine elements of the

incoming IIOP request and generate a USERID. You must specify the name of your

security program on the URM attribute of the TCPIPSERVICE resource definition,

Chapter 15. Processing IIOP requests 191

and also supply a PROGRAM resource definition for it. If you do not specify a value

for URM on the TCPIPSERVICE, no program is called.

The IIOP security program is called only if CICS cannot obtain a user ID using SSL

client authentication. See the CICS RACF Security Guide for more information.

A sample IIOP security program, DFHXOPUS, is supplied

Your security program may use CICS services, such as a task-related user exit to

access DB2, and application parameters encoded within the body of the request.

Using DFHXOPUS

The CICS supplied sample user-replaceable program, DFHXOPUS, accepts the

RACF USERID associated with the client certificate, if there is one.

If there is no RACF USERID associated with a certificate:

v For SSL(CLIENTAUTH), DFHXOPUS uses the first eight characters of the

COMMONNAME extracted from the client certificate.

v For SSL(YES) or SSL(NO), DFHXOPUS uses the first eight characters of the

IIOP Principal, if there is one.

Note: Versions of the General Inter-ORB Protocol (GIOP) from 1.2 onwards do

not support the IIOP Principal field in request headers. So DFHXOPUS

will only ever return a user ID derived from the IIOP Principal when the

request is in GIOP 1.1, or earlier, format.

If a USERID has not been found using these procedures, DFHXOPUS returns the

USERID specified in the CICS system initialization DFLTUSER system initialization

parameter.

The security exit program returns the user ID in the userid field of the

communications area. If the user ID is less than 8 characters long, the exit program

pads the field with blanks. Because a user ID is being returned, the return_code

field is set to RCUSRID (X’01’) .

If you write your own security exit program, it should return all fields other than

userid and return_code unchanged, or unpredictable results may occur.

Obtaining a CICS TRANSID

To associate the incoming GIOP request with a CICS transaction ID, you need to

provide and install a REQUESTMODEL resource definition. You should supply

REQUESTMODEL resources for all possible requests that should run under a

non-default transaction ID. At run-time, when CICS receives a GIOP request it

compares fields in the request with predefined values in the REQUESTMODELs, to

find the REQUESTMODEL that most exactly matches the request. The selected

REQUESTMODEL provides the TRANSID name that is used to process the

request. If no match is found, a default TRANSID (CIRP) is used.

REQUESTMODELs can be used with enterprise beans, stateless CORBA objects,

or both. They specify:

v CORBA MODULE and INTERFACE patterns to match against requests for

stateless CORBA objects

v Bean names for matching enterprise beans.

v OPERATION patterns to match against:

– Enterprise bean method names

192 Java Applications in CICS

– CORBA stateless object method names

– IDL operations (CORBA stateless objects only)

Note: The OPERATION field is subject to the Java-to-IDL name-mangling rules

described in “Name-mangling of the OPERATION field” on page 194.

v The CICS transaction to be started when a matching request is received. The

default is CIRP, which specifies the default DFJIIRP program. If you choose to

use your own transaction definition, you should base it on CIRP and provide a

TRANSACTION resource definition with the PROGRAM parameter set to the

name of a CICS program that is defined with the JVMCLASS parameter set to

com.ibm.cics.iiop.RequestProcessor. The following default resource definitions

are provided by CICS in the DFHIIOP group:

DEFINE TRANSACTION(CIRP) GROUP(DFHIIOP)

 PROGRAM(DFJIIRP) TWASIZE(0)

 PROFILE(DFHCICST) STATUS(ENABLED)

 TASKDATALOC(ANY) TASKDATAKEY(USER)

 RUNAWAY(SYSTEM) SHUTDOWN(ENABLED)

 PRIORITY(1) TRANCLASS(DFHTCL00)

 DTIMOUT(NO) TPURGE(NO)

 SPURGE(YES) ISOLATE(YES)

 RESSEC(YES) CMDSEC(YES)

 RESTART(NO)

 DESCRIPTION(Default CICS IIOP Request Processor transaction)

DEFINE PROGRAM(DFJIIRP) GROUP(DFHIIOP)

 DESCRIPTION(CICS IIOP Request Processor)

 JVM(YES)

 JVMCLASS(com.ibm.cics.iiop.RequestProcessor)

 JVMPROFILE(DFHJVMCD)

 LANGUAGE(LE370) RELOAD(NO) EXECKEY(USER)

 RESIDENT(NO) USAGE(NORMAL) USELPACOPY(NO)

 STATUS(ENABLED) CEDF(NO) DATALOCATION(ANY)

 DYNAMIC(NO)

See “Dynamic routing” on page 194 if the request is to be routed to an AOR.

v The name of the CorbaServer that will process the request

See the CICS Resource Definition Guide for full details of the REQUESTMODEL

resource definition.

Note: To simplify the process of creating REQUESTMODEL definitions for

enterprise beans, use the CREA CICS-supplied transaction.

Pattern matching

All requests are compared with installed REQUESTMODEL values for

CORBASERVER and TYPE. A TYPE value of CORBA indicates a request for a

stateless CORBA object; a TYPE value of EJB indicates a request for an enterprise

bean, and a TYPE value of GENERIC can indicate either type of request. Further

matching is then performed, based on the TYPE value:

Stateless CORBA objects

 For stateless CORBA objects, (TYPE=CORBA, or GENERIC), the matching

process compares the MODULE name, INTERFACE and OPERATION fields

contained within the IIOP message, against the patterns defined in each

installed REQUESTMODEL, until the closest match is found. INTERFACE,

Chapter 15. Processing IIOP requests 193

MODULE, and OPERATION can be defined as generic patterns. The rules for

pattern matching are summarized as follows:

v Double colons are used as component separators. Each component must be

between 1 and 16 characters long

v Generic patterns can consist of zero or more characters followed by *.

If several different generic patterns match a given string, the longest generic

pattern results in the most specific match.

Enterprise beans

For enterprise beans, the matching process compares the BEANNAME,

OPERATION, and INTFACETYPE fields within the IIOP message, against those

defined in each installed REQUESTMODEL.

Name-mangling of the OPERATION field

The OPERATION field of the REQUESTMODEL definition is used to supply the

name of the remote method that is to be matched by this request model. The GIOP

request received at run-time includes an operation field which is compared to the

OPERATION field on the request model. However, the value of the operation field is

not always the same as the method name, as used on the stateless CORBA object

or enterprise bean. If RMI-IIOP is being used (as always happens with enterprise

beans and may happen with stateless CORBA objects), the method name

undergoes a process known as “mangling” to change the method name into a

canonical form suitable for transmission using IIOP. This mangled method name

may not be the same as the original method name. The operation field in the

REQUESTMODEL must supply the mangled version of the method name (or a

pattern, using wildcard characters, that matches it).

The CICS-supplied CREA transaction can be used to create REQUESTMODEL

definitions for enterprise beans that automatically deal with this name-mangling

issue.

This mangling and de-mangling knowledge is compiled into the application’s stub

and tie classes generated using the RMI compiler (RMIC).

For more information about mangling, see “Name mangling for Java” on page 195.

REQUESTMODEL examples

This is an example of a stateless CORBA object REQUESTMODEL:

DEFINE REQUESTMODEL(DFJ$IIRH) GROUP(DFH$IIOP)

 CORBASERVER(IIOP)

 TYPE(Corba)

 MODULE(hello)

 INTERFACE(HelloWorld)

 OPERATION(*)

 TRANSID(IIHE)

 DESCRIPTION(Hello world java server sample)

Dynamic routing

If the method invocation is to be routed to another region (AOR), you must define

the TRANSID specified in the REQUESTMODEL as dynamically routable in the

Listener region (using the DYNAMIC parameter). If you use the supplied default

TRANSACTION definition, CIRP, then you will need to change it.

194 Java Applications in CICS

Name mangling for Java

Name mangling is a term that denotes the process of mapping a name that is valid

in a particular programming language to a name that is valid in the CORBA

Interface Definition Language (IDL). This topic explains why mangling is neccesary

for Java names, how the names are mangled, and how mangling affects your CICS

system.

Why mangling is necessary for Java names

Java client programs use Java Remote Method Invocation (RMI) to invoke methods

in a server. RMI in turn uses one of two communication protocols between client

and server:

Java Remote Method Protocol (JRMP)

RMI uses JRMP when both client and server applications are written in

Java. CICS does not use JRMP.

Internet Inter-ORB Protocol (IIOP)

RMI uses in an environment when client and server applications may be

written in different languages. When IIOP is used as the communications

protocol, Java client applications can use the RMI to invoke server

programs in another language (C++, for example), as well as to invoke

remote Java programs.

IIOP uses Interface Definition Language (IDL) to specify interfaces between objects

in a language-independent way. When a Java client makes a remote method call,

the Java method name, and its arguments, are converted to the equivalent IDL for

transmission to the server using IIOP. It is at this point that mangling may be

necessary, because there are many differences in the rules for Java names and IDL

names. Some of these differences are:

v Java names are case-sensitive, IDL names are not

v Java supports overloaded methods, IDL does not

v Java names can contain Unicode characters, IDL names cannot

v Some valid Java names may collide with IDL keywords

v Java names can start with a leading underscore, IDL names cannot

In these cases, and others, Java names that are not permitted in IDL, or that are

permitted but may be ambiguous, are mangled into an acceptable form.

How Java names are mangled

The rules by which a Java method call is mapped to an IDL name are not simple,

and depend upon the circumstances. Here is one example:

This example illustrates two important principles:

v It is not possible to determine the mangled name of a given method without

knowing what other methods exist.

A Java remote interface has methods save, Save and SAVE. These names are

distinct in Java, but - because IDL names are not case sensitive - IDL cannot

distinguish between them. Therefore, the names are mangled to make them

distinct. The mangled names are save_, Save_0 and SAVE_0_1_2_3. However, if

the Java remote interface had just one method - save - the name would not be

mangled, because there is no possibility of ambiguity.

Chapter 15. Processing IIOP requests 195

v Adding or removing a method can affect the mangled names of other methods.

Other cases where mangling is necessary are handled differently. For detailed

information about the mapping between Java and IDL, see Java Language to IDL

Mapping, which is published by the Object Management Group (OMG)

(http://www.omg.org).

How mangling affects CICS

Although the support for IIOP within CICS contains code that implements the

mangling rules, there is very little visible effect on the way you configure and use

your CICS system. There are just two situations in which you need to be aware that

mangling takes place. They are:

When defining REQUESTMODELs

REQUESTMODEL resource definitions map inbound IIOP request to CICS

transactions. When an inbound request initiated by a Java remote method

invocation is received, the OPERATION attribute in the REQUESTMODEL

is compared with the mangled name in the inbound request to determine if

the REQUESTMODEL matches the request. If it is possible that mangling

can take place, do not specify a method name in the OPERATION attribute

of the REQUESTMODEL, but specify a generic operation instead.

When creating debugging profiles for Java programs

Debugging profiles specify which program instances are to run under the

control of a debugger. When an inbound request initiated by a Java remote

method invocation is received, the method field of the debugging profile is

compared with the mangled name in the inbound request to determine if the

profile matches the request. If it is possible that mangling can take place,

do not specify a method name in the debugging profile, but specify a

generic method instead.

CAUTION: Although - in theory - its is possible to deduce the mangled names

corresponding to each method, it is not a simple task, and is not

advisable. To do so, you will need a thorough knowledge of the

mangling rules, and of all the method names used in your application.

There is also a risk that small changes to an application can change a

mangled name.

Handling IIOP diagnostics

If a remote method that is invoked over IIOP fails, the client code will receive a

CORBA exception. This includes all enterprise bean exceptions.

CORBA exceptions are defined in the CORBA documentation, which can be

obtained from the CORBA web site: http://www.omg.org.

In many instances, the exception includes a CICS specific minor code to aid in

problem determination. CICS currently uses the following minor codes:

 Table 8. CICS specific CORBA minor codes

Code CICS component detecting problem

1229111296 CICS IIOP request receiver

1229111297 Elsewhere in CICS II domain

1229111298 ORB component of CICS OT domain

1229111299 JTS component of CICS OT domain

196 Java Applications in CICS

http://www.omg.org/
http://www.omg.org/

Table 8. CICS specific CORBA minor codes (continued)

Code CICS component detecting problem

1229111300 CSI component of CICS OT domain

1229111301 CSI component of CICS EJ domain

If the client receives a CORBA exception containing any of the CICS minor codes,

you should examine the CICS message logs for further information about the error.

Chapter 15. Processing IIOP requests 197

198 Java Applications in CICS

Part 5. Using enterprise beans

This Part tells you what you need to know to develop and use enterprise beans in

CICS.

© Copyright IBM Corp. 1999, 2006 199

200 Java Applications in CICS

Chapter 16. What are enterprise beans?

This chapter describes CICS support for the Enterprise JavaBeans (EJB)

architecture.

This chapter is intended as an introduction to CICS support for Enterprise

JavaBeans. It does not attempt to describe the Enterprise JavaBeans architecture

in depth. If you need a full description of the EJB architecture, see Sun

Microsystem’s Enterprise JavaBeans Specification, Version 1.1, which is available

at http://www.javasoft.com/products/ejb.

The chapter covers the following topics:

v “Enterprise beans—the big picture”

v “JavaBeans and Enterprise JavaBeans” on page 202

v “The EJB server—overview” on page 204

v “The EJB container—overview” on page 204

v “Enterprise beans—the home and component interfaces” on page 205

v “Enterprise beans—the deployment descriptor” on page 206

v “Types of enterprise bean” on page 207

v “Enterprise beans—managing transactions” on page 210

v “Enterprise beans—security overview” on page 211

v “Enterprise beans—user tasks” on page 212

v “Deploying enterprise beans—overview” on page 214

v “Configuring CICS as an EJB server—overview” on page 216

v “Enterprise beans—what can a client do with a bean?” on page 223

v “Enterprise beans—what can a bean do?” on page 224

v “Benefits of EJB technology” on page 225

v “Requirements for EJB support” on page 226

Enterprise beans—the big picture

This section shows you the “big picture”—what CICS support for Enterprise

JavaBeans means in general terms. The sections that follow fill in the details.

Sun Microsystem’s Enterprise JavaBeans Specification, Version 1.1, defines a

model for the development of reusable Java server components (known as

enterprise beans) that can be used in any application server that provides the

services and interfaces defined by the specification.

You can configure CICS as an EJB server. CICS provides a run-time environment

where requests for EJB services are mapped to existing or enhanced CICS

services.

You can write enterprise beans that give Java clients access to your past

investment in CICS applications and data. For example, you can write enterprise

beans that:

v Use the JCICS classes1 to access CICS resources.

1. Enterprise beans that use the JCICS classes are not portable to a non-CICS environment.

© Copyright IBM Corp. 1999, 2006 201

v Use JCICS or the CCI Connector for CICS TS to link to existing CICS programs

written in procedural languages such as COBOL. (For information about the CCI

Connector for CICS TS, see page Chapter 23, “The CCI Connector for CICS TS,”

on page 307.)

Figure 17 shows, in simplified form, a CICS EJB application server interacting with

its environment. It shows enterprise beans that have been developed on a

workstation being installed into the EJB server by a process known as deployment.

Once installed in the server, the enterprise beans are executed in a Java Virtual

Machine (JVM) at the request of a client program.

Note: The details of Figure 17 are explained in the sections that follow.

JavaBeans and Enterprise JavaBeans

JavaBeans and Enterprise JavaBeans are component architectures for the Java

language.

Components

A component is a reusable software building block; a pre-built piece of

encapsulated application code that can be combined with other components and

with handwritten code to produce a custom-built application rapidly.

An application developer can make use of a component without requiring access to

its source code. Components can be customized to suit the specific requirements of

an application through a set of external property values. For example, a button

CSD

deployment

JVM

ejb-jar

client

= dataflow

install

JDBC

readcheck

JN
DI

CICS EJB Server

DB2

HFS

deployed
JAR

development

enterprise
bean

lookup

External
security
manager

IIOP connection

bind

namespace

Figure 17. A CICS EJB application server. Enterprise beans developed on a workstation are installed into the EJB

server by a process known as deployment. They are executed in a JVM at the request of a client program. The details

of this picture are explained in the sections that follow.

202 Java Applications in CICS

component has a property that specifies the caption that should appear on the

button. An account management component has a property that specifies the

location of the account database.

Components execute within a construct called a container, which (among other

things) provides an operating system process in which to execute the component.

The component model defines the interfaces by which the component interacts

with its container and with other components. The developer of a component may

code it using a variety of internal methods and properties but, to ensure that it can

be used with other components, he or she must implement the interfaces defined in

the component model. These interfaces also allow components to be loaded into

rapid application development (RAD) tools, such as WebSphere Studio Application

Developer.

JavaBeans

A JavaBean is a self-contained, reusable software component, written in Java,

usually intended for use in a desktop or client application. Typically, desktop

JavaBeans have a visual element, and execute within some type of visual

container, such as a form, panel, or Web page. Examples might range from a

simple button to a fully-featured software CD player.

Bean developers can use a visual tool, such as WebSphere Studio Application

Developer, to create JavaBeans. Application developers can use such tools to “wire”

JavaBeans together into a larger application, and to set the properties of individual

beans.

Enterprise JavaBeans

The Enterprise JavaBeans architecture supports server components. Server

components are application components that run in an application server such as

CICS. Unlike desktop components, they do not have a visual element and the

container they run in is not visual.

Server components written to the Enterprise JavaBeans specification are known as

enterprise beans. They are portable across any EJB-compliant application server.

To be useful, server components require access to the application server’s

infrastructure services, such as its distributed communication service, naming and

directory services, transaction management service, data access and persistence

services, and resource-sharing services. Different application servers implement

these infrastructure services using different technologies. However, an

EJB-compliant application server provides an enterprise bean with access to these

services through standard interfaces, and manages many of them on behalf of the

bean.

Bean developers can use a visual tool, such as WebSphere Studio Application

Developer, to create enterprise beans. Application developers can combine method

calls to enterprise beans with desktop JavaBeans, Web servlets, and handwritten

code to form client/server applications.

Chapter 16. What are enterprise beans? 203

The EJB server—overview

An EJB-compliant application server is known as an EJB server. An EJB server

could be a transaction processing monitor such as CICS, a Web server, a

database, or some other type of server. Note that a CICS EJB server may comprise

multiple CICS regions, as described in “Logical servers—enterprise beans in a

sysplex” on page 217.

An EJB server provides a standard set of services to support enterprise bean

components. These services include:

v Support of the Java Remote Method Invocation (RMI) interface that is used by

enterprise beans for communication. RMI has two transport protocol

options—JRMP for Java-to-Java interoperation and IIOP for interlanguage

interoperation, mediated using a CORBA Object Request Broker (ORB). (For a

description of the CICS ORB, see “The Object Request Broker (ORB)” on page

153.)

CICS Transaction Server for z/OS, Version 3 Release 1 supports RMI over IIOP

(RMI-IIOP), but not JRMP. (JRMP is a proprietary protocol that cannot be used to

interoperate with non-Java components. CICS does not support distributed

transactions over JRMP.)

v A container, called an EJB container, which provides management services for

enterprise beans.

v A distributed transaction management service that implements the

javax.transaction.UserTransaction interface of the Java Transaction API (JTA).2

v Security services.

v Support for the Java Naming and Directory Interface (JNDI). The JNDI API

provides directory and naming functionality for Java applications. It enables a

client to locate an enterprise bean.

v Support for the Java Data Base Connectivity (JDBC) interface.

The EJB container—overview

Whereas desktop JavaBeans usually run within a visual container such as a form or

a Web page, an enterprise bean runs within a container provided by the application

server.

The EJB container creates and manages enterprise bean instances at run-time, and

provides the services required by each enterprise bean running in it.

The EJB container supports a number of implicit services, including lifecycle, state

management, security, and transaction management:

Lifecycle

Individual enterprise beans do not need to manage process allocation, thread

management, object activation, or object passivation explicitly. The EJB

container automatically manages the object lifecycle on behalf of the enterprise

bean.

State management

Individual enterprise beans do not need to save or restore object state between

method calls explicitly. The EJB container automatically manages object state

on behalf of the enterprise bean.

2. The javax.transaction.UserTransaction interface is used by session beans that manage their own transactions, as described later in

this chapter.

204 Java Applications in CICS

Security

Individual enterprise beans do not need to authenticate users or check

authorization levels explicitly. The EJB container can automatically perform all

security checking on behalf of the enterprise bean.

Transaction management

Individual enterprise beans do not need to specify transaction demarcation code

to participate in distributed transactions. The EJB container can automatically

manage the start, enrollment, commitment, and rollback of transactions on

behalf of the enterprise bean.

The execution environment

Before enterprise beans can be deployed into an EJB server, their execution

environment must be configured. In CICS, this is achieved by installing a

CORBASERVER resource definition. A CORBASERVER defines an execution

environment for enterprise beans and CORBA stateless objects. For convenience,

we shall refer to the execution environment defined by a CORBASERVER definition

as a CorbaServer.

Note that:

v A CICS EJB server may contain more than one CorbaServer.

v Any number of enterprise beans can be deployed into the same CorbaServer.

v A specific enterprise bean can be deployed multiple times into the same CICS

EJB server, but not into the same CorbaServer. (In other words, to install a

specific enterprise bean multiple times into the same CICS EJB server you must

install it into different CorbaServer execution environments. One reason for doing

this might be to make the bean available with different deployment

properties—see “Enterprise beans—the deployment descriptor” on page 206.)

Each deployment results in the creation of a distinct home object (see “Enterprise

beans—the home and component interfaces”).

Enterprise beans—the home and component interfaces

Client applications do not interact with an enterprise bean directly. Instead, the

client interacts with the enterprise bean through two intermediate objects that are

created by the container from classes generated by a deployment tool—one of

which classes implements the EJB home interface and the other the EJB

component interface. As the client invokes operations using these intermediate

objects, the container intercepts each method call and inserts the management

services.

The home and component interfaces are implemented as Java RMI remote objects,

which allows the ORB to support them as distributed objects.

The home interface

The home interface is the mechanism by which the client identifies the

enterprise bean it wants. It allows a client to create, remove, and (for entity

beans, not supported by CICS) find existing instances of, enterprise beans.

Note that the “client” might not be a program running on a network workstation;

it might, for example, be a servlet running on a Web server; or an enterprise

bean, program, or object on the local EJB server, or on another EJB server.

 When a bean is deployed in an EJB server, the container registers the home

interface in a namespace that is accessible remotely. Using the Java Naming

and Directory Interface (JNDI) API, any client with access to the namespace

Chapter 16. What are enterprise beans? 205

can locate the home interface by name. (To be precise, the client locates, by

name, an object that implements the home interface. The home interface

extends the EJBHome interface.)

The component interface

The component interface allows a client to access the business methods of the

enterprise bean. It intercepts all business method calls from the client and

inserts whatever transaction, state management, persistence, and security

services were specified when the bean was deployed.

 When a client creates or finds an instance of an enterprise bean, the container

returns a component interface object (one per instance). (To be precise, the

container returns a reference to an instance of a class that implements the

component interface. The component interface extends the EJBObject

interface.)

Enterprise beans—the deployment descriptor

The rules governing an enterprise bean’s lifecycle, transaction management,

security, and persistence are defined in an associated XML document called a

deployment descriptor. See “Deploying enterprise beans—overview” on page 214.

Re-usable components may be customizable through a set of external property

values, so that they can be modified to suit the requirements of a particular

application without changing the source code. An enterprise bean developer can

provide (within the deployment descriptor) a set of environment properties to

allow the application developer to customize the bean. For example, a property

might be used to specify the location of a database or to specify a default national

language. At run time, an environment object is created which contains the

customized property values set during the application assembly process or the bean

deployment process.

The EJB server: summary

This topic summarizes the information about EJB servers presented in the previous

topics. The following figure shows enterprise bean objects in a CICS EJB server.

206 Java Applications in CICS

Types of enterprise bean

This section discusses two types of enterprise bean—session beans and entity

beans.

Session beans

A session bean:

v Is created by a client and represents a single conversation, or session, with that

client.

v Typically, persists only for the life of the conversation with the client. In this

sense, it can be likened to a pseudoconversational transaction.

If the bean developer chooses to save information beyond the life of a session,

he or she must implement persistence operations—for example, JDBC or SQL

calls—directly in the bean class methods.

v Typically, performs operations on business data on behalf of the client, such as

accessing a database or performing calculations.

CICS EJB server

EJB container

Client

RMI / IIOP

create
remove

business
methods

CorbaServer execution environment

EJB instance

EJBHome

EJBObject

Deployment descriptor

Environment
properties

Figure 18. Enterprise bean objects in a CICS EJB server. The EJB container manages and provides services to the

enterprise beans contained within it. When a bean is deployed, the deployment tool generates the EJB home and

component interface classes.

The home interface is accessible through JNDI and implements lifecycle services for the bean. The client uses it to

create, remove, and (for entity beans, not directly supported by CICS) find instances of enterprise beans.

The container creates an EJB component interface object for each instance of the bean. The component interface

provides access to the business methods within the bean. It intercepts all business method calls from the client and

implements transaction, state management, persistence, and security services for the bean, based on the settings of

the bean’s deployment descriptor.

Chapter 16. What are enterprise beans? 207

v May or may not be transactional. If it’s transactional, it can manage its own

Object Transaction Service (OTS) transactions, or use container-managed OTS

transactions. For an explanation of the relationship between OTS transactions

and CICS units of work, see “Enterprise beans—managing transactions” on page

210.

v Is not recoverable—if the EJB server crashes, it may be destroyed.

v Has two flavours: stateful and stateless.

Stateful session beans

A stateful session bean has a client-specific conversational state, which it maintains

across methods and transactions; for example, a “shopping cart” object would

maintain a list of the items selected for purchase by the user.

A stateful session bean that manages its own transactions can begin an OTS

transaction in one method and commit or roll it back in a subsequent method.

Stateless session beans

A stateless session bean has no client-specific (nor any other kind of) non-transient

state; for example, a “stock quotation” object might simply return current share

prices.

A stateless session bean that manages its own transactions and begins a

transaction must commit (or roll back) the transaction in the same method in which

it started it.

Entity beans

Important

CICS does not support entity beans directly. That is, entity beans cannot run in a

CICS EJB server. However, a session bean or program running in a CICS EJB

server can be a client of an entity bean running in a non-CICS EJB server.

An entity bean:

v Is typically an object representation of business data, such as a customer order.

Typically, the data:

– Are maintained in a permanent data store, such as a database.

– Need to persist beyond the life of a client instance. Therefore, an entity bean

is relatively long-lived, compared to a session bean.

v Object can be accessed by more than one client at the same time. This is

possible because each instance of an entity bean is identified by a primary key,

which can be used to find it via the home interface.

v Can manage its own persistence (bean-managed persistence), or delegate the

task to its container (container-managed persistence).

If the bean manages its own persistence, the bean developer must implement

persistence operations—for example, JDBC or SQL calls—directly in the bean.

If the entity bean delegates persistence to the container, the latter manages the

persistent state transparently; the bean developer doesn’t need to code any

persistence operations within the bean.

v May or may not be transactional. If it’s transactional, all transaction functions are

performed implicitly by the EJB container and server. There are no transaction

demarcation statements within the bean code. Unlike session beans, an entity

bean is not permitted to manage its own OTS transactions. See “Enterprise

beans—managing transactions” on page 210.

208 Java Applications in CICS

v Is recoverable—it survives a server crash.

Session beans and entity beans compared

Table 9 is a summary of the differences between entity and session beans.

 Table 9. Comparison of session and entity beans

Session bean Entity bean

Represents a single conversation with a

client.

Typically, encapsulates an action or actions

to be taken on business data.

Typically, encapsulates persistent business

data—for example, a row in a database.

Is relatively short-lived. Is relatively long-lived.

Is created and used by a single client. May be shared by multiple clients.

Has no primary key. Has a primary key, which enables an

instance to be found and shared by more

than one client.

Typically, persists only for the life of the

conversation with the client. (However, may

choose to save information.)

Persists beyond the life of a client instance.

Persistence can be container-managed or

bean-managed.

Is not recoverable—if the EJB server fails, it

may be destroyed.

Is recoverable—it survives failures of the

EJB server.

May be stateful (that is, have a client-specific

state) or stateless (have no non-transient

state).

Is typically stateful.

May or may not be transactional. If

transactional, can manage its own OTS

transactions, or use container-managed

transactions.

A stateful session bean that manages its

own transactions can begin an OTS

transaction in one method and commit or roll

it back in a subsequent method.

A stateless session bean that manages its

own transactions and begins an OTS

transaction must commit (or roll back) the

transaction in the same method in which it

was started.

The state of a transactional, stateful session

bean is not automatically rolled back on

transaction rollback. In some cases, the bean

can use session synchronization to react to

syncpoint.

May or may not be transactional. Must use

the container-managed transaction model.

If transactional, its state is automatically

rolled back on transaction rollback.

Is not re-entrant. May be re-entrant.

Chapter 16. What are enterprise beans? 209

Enterprise beans—managing transactions

Clients can begin, commit, and roll back ACID transactions3 using an

implementation of the Java Transaction Service (JTS) or the CORBA Object

Transaction Service (OTS). These transactions are analogous to CICS distributed

units of work. We use the term OTS transaction to differentiate these transactions

from CICS transaction definitions (the ones with 4-character transaction identifiers)

and CICS transaction instances (which are sometimes loosely called “tasks”).

When a client calls an enterprise bean in the scope of an OTS transaction,

information about the transaction flows to the EJB server in an IIOP “service

context”, which is like an extra (hidden) parameter on the method request. The EJB

server uses this information if it needs to participate in the transaction. Whether the

method of an enterprise bean needs to run under a client’s OTS transaction (if

there is one) is determined by the setting of the transaction attribute specified in

the bean’s deployment descriptor. The method may run under the client’s OTS

transaction, under a separate OTS transaction which is created for the duration of

the method, or under no OTS transaction.

Entity beans must use container–managed OTS transactions. All transaction

functions are performed implicitly by the EJB container and server. There are no

transaction demarcation statements within the bean code.

Session beans can use either container-managed OTS transactions or

bean–managed OTS transactions. A session bean that uses bean–managed

transactions uses methods of the javax.transaction.UserTransaction interface to

demarcate transactions. A stateful session bean that manages its own transactions

can begin an OTS transaction in one method and commit or roll it back in a

subsequent method. A stateless session bean that manages its own transactions

and begins an OTS transaction must commit (or roll back) the transaction in the

same method.

At runtime, the EJB container implements transaction services according to the

setting of the transaction attribute specified in the bean’s deployment descriptor.

The possible settings of the transaction attribute are:

Mandatory

Indicates that the bean must always execute within the context of the caller’s

OTS transaction. If the caller does not have a transaction when it calls the

bean, the container throws a javax.transaction.TransactionRequiredException

exception and the request fails.

Never

Indicates that the bean must not be invoked within the context of an OTS

transaction. If a caller has an OTS transaction when it calls the bean, the

container throws a java.rmi.RemoteException exception and the request fails.

NotSupported

Indicates that the bean cannot execute within the context of an OTS

transaction. If a caller has an OTS transaction when it calls the bean, the

container suspends the transaction for the duration of the method call. It

resumes the suspended transaction when the method has completed. The

suspended transaction context of the client is not passed to resource managers

or enterprise bean objects that are invoked from the method.

3. Transactions possessing atomicity, consistency, isolation, and durability. Jim Gray and Andreas Reuter, Transaction Processing:

Concepts and Techniques, 1993.

210 Java Applications in CICS

Required

Indicates that the bean must execute within the context of an OTS transaction.

If a caller has an OTS transaction when it calls the bean, the method

participates in the caller’s transaction. If the caller does not have an OTS

transaction, the container starts a new OTS transaction for the method.

RequiresNew

Indicates that the bean must execute within the context of a new OTS

transaction. The container always starts a new OTS transaction for the method.

If the caller has an OTS transaction when it calls the bean, the container

suspends the caller’s transaction for the duration of the method call. The

suspended transaction context of the client is not passed to resource managers

or enterprise bean objects that are invoked from the method.

Supports

Indicates that the bean can run with or without a transaction context. If a caller

has an OTS transaction when it calls the bean, the method participates in the

caller’s transaction. If the caller does not have an OTS transaction, the method

runs without one.

Note: Enterprise bean methods always execute in a CICS task, under a CICS unit

of work. Even if an enterprise bean method executes under no OTS

transaction, any updates that the method makes to recoverable resources

are committed only at normal termination of the CICS task, and backed out if

there is a need to roll back.

The setting of a method’s transaction attribute determines whether or not the

CICS task under which the method executes makes its unit of work part of a

wider, distributed OTS transaction.

A single CICS task cannot contain more than one enterprise bean, because

CICS treats an execution of an enterprise bean method as the start of a new

task. You can create an application that includes more than one enterprise

bean, but the application will not operate as a single CICS task.

Enterprise beans—security overview

EJB security is concerned with authentication, access control, and the Java 2

security policy mechanism.

Authentication

Authentication of EJB clients uses the TCP/IP secure sockets layer (SSL) protocol.

See the CICS RACF Security Guide for information about configuring CICS to use

SSL.

Access control

Security roles

Access to enterprise bean methods is based on the concept of security roles. A

security role represents a type of user of an application in terms of the permissions

that the user must have to successfully use the application.

The roles that are permitted to execute a particular enterprise bean or particular

methods of a bean are specified in the bean’s deployment descriptor, and the

mapping of security roles to individual users is done in the external security

manager.

Chapter 16. What are enterprise beans? 211

For more information about security roles, see “Security roles” on page 341.

CICS transaction and resource security

You can use CICS transaction security and resource security with EJB resources.

CICS transaction security applies to the CICS transactions associated with

enterprise bean methods—that is, the transactions named on EJB

REQUESTMODEL definitions.

CICS resource security applies to the CICS resources accessed by enterprise

beans (by means of, for example, JCICS).

The Java 2 security manager

The security of the enterprise beans container environment is protected by the Java

2 security policy mechanism and is independent of CICS security. The security

policy mechanism is one of the components that make up the Java 2 security

model.

The security policy mechanism is used to enforce the restrictions in the EJB

specification concerning Java functions that may not be issued by enterprise beans.

CICS provides a policy file that enforces this behaviour.

To use JDBC or SQLJ from enterprise beans with a Java 2 security policy

mechanism active, you must use the JDBC 2.0 driver provided by DB2 Version 7.

The JDBC 1.2 driver provided by DB2 does not support Java 2 security, and will fail

with a security exception unless you disable the mechanism.

Enterprise beans—user tasks

Typically, several people are involved in the development and deployment of

applications that use enterprise beans:

v The bean provider

v The application assembler

v The deployer

v The system administrator

Note: In smaller organizations, one person may be responsible for more than one

of these tasks.

The bean provider

The bean provider develops reusable enterprise beans that typically implement

business tasks or business entities.

The bean provider’s output is an ejb-jar file that contains one or more enterprise

beans. The bean provider is responsible for:

v The Java classes that implement an enterprise bean’s business methods.

v The definition of the bean’s component and home interfaces.

v The bean’s deployment descriptor.

The deployment descriptor includes the structural information—for example, the

name of the enterprise bean class—of the enterprise bean and declares all the

bean’s external dependencies—for example, the names and types of the

resource managers that the enterprise bean uses.

212 Java Applications in CICS

The application assembler

The application assembler creates applications that use enterprise beans. He

combines enterprise beans and hand-written client code into a client/server

application. Although he must be familiar with the functionality provided by the

enterprise beans’ component and home interfaces, he does not need to have any

knowledge of the enterprise beans’ implementation.

The input to the application assembler is one or more ejb-jar files produced by the

bean provider. His output is one or more ejb-jar files that contain the enterprise

beans, along with their application assembly instructions and customized

environment settings. He has inserted the application assembly instructions,

security roles, and environment values into the deployment descriptors.

The application assembler may also combine enterprise beans with other types of

application components—for example, JavaBeans—when assembling an

application.

Typically, the application assembly step occurs before the deployment of the

enterprise beans. However, sometimes assembly may be performed after the

deployment of all or some of the enterprise beans.

The deployer

The deployer takes one or more ejb-jar files produced by the application assembler

and deploys the enterprise beans contained in the ejb-jar files into a specific

CorbaServer in an EJB server.

The deployer must:

v Resolve all the external dependencies declared by the bean provider. For

example, he must ensure that all resource manager connection factories used by

the enterprise beans are present in the operational environment, and bind them

to the resource manager connection factory references declared in the

deployment descriptor.

v Follow the application assembly instructions defined by the application

assembler. For example, the deployer is responsible for mapping the security

roles defined by the application assembler to CICS user groups and external

security manager profiles.

The deployment process is semi-automated. To perform his role, the deployer uses

a deployment tool. Deployment tools are provided by CICS.

The deployer’s output are enterprise beans that have been customized for the

target operational environment, and deployed in one or more CorbaServers.

The system administrator

The system administrator is responsible for configuring and administering the CICS

regions that comprise the logical EJB server, together with their network

connections. He or she is also responsible for overseeing the well-being of the

deployed EJB applications at runtime.

Chapter 16. What are enterprise beans? 213

Deploying enterprise beans—overview

A desktop Java bean is developed, installed, and run on a workstation. An

enterprise bean, however, which will run on a server, requires an additional stage,

deployment, to prepare the bean for the runtime environment and install it into the

EJB server.

Enterprise beans are produced by the bean provider and customized by the

application assembler. The application assembler may use a tool such as the

Assembly Toolkit (ATK) (described in the CICS Operations and Utilities Guide) to

customize the ejb-jar file. The customized ejb-jar file passed to the deployer

contains:

v The java classes for one or more enterprise beans.

v A single deployment descriptor, written in XML, which describes the

characteristics of each of the enterprise beans, such as:

– Transaction attributes

– Environment properties

– Security levels

– Application assembly information.

Also required is CICS-specific information, such as resource definition requirements,

in either resource definition online (RDO) format (for DFHCSDUP) or CICSPlex SM

Business Application Services (BAS) format (for BATCHREP).

Here’s an outline of the deployment process:4

1. A deployment tool (such as the Assembly Toolkit (ATK), described in the CICS

Operations and Utilities Guide) is used to transform the ejb-jar file into a

deployable JAR file, suitable for deployment. The transformed file contains the

XML deployment descriptor and enterprise bean classes from the ejb-jar file,

plus additional classes generated in support of the EJB container. The

transformed file is stored as a deployed JAR file on the hierarchical file system

(HFS) used by z/OS.

It is recommended that you store the deployed JAR file in the CorbaServer’s

deployed JAR file directory (specified by the DJARDIR option of the

CORBASERVER definition). The deployed JAR file directory is also known as

the “pickup” directory. When CICS scans the pickup directory, it automatically

creates and installs a definition of each new or updated deployed JAR file that it

finds there. CICS scans the pickup directory:

v Automatically, when the CORBASERVER definition is installed, or

v When instructed to by means of an explicit EXEC CICS or CEMT PERFORM

CORBASERVER SCAN command, or

v When instructed to by the resource manager for enterprise beans (otherwise

known as the RM for enterprise beans), which issues a PERFORM

CORBASERVER SCAN command on your behalf. (The resource manager for

enterprise beans is described in the CICS Operations and Utilities Guide).

2. CICS resource definitions are required for:

v The CorbaServer execution environment (CORBASERVER). (The same

CORBASERVER definition will be installed on each CICS AOR in the logical

EJB server.)

4. This simplified description of the deployment process assumes that you’re using RDO rather than BAS.

214 Java Applications in CICS

v TCP/IP services (for IIOP). One or more TCPIPSERVICE definitions will be

installed on each CICS region in the logical EJB server.

v Request models, to associate client IIOP requests with CICS TRANSIDs (and

thus to associate bean methods with sets of execution characteristics,

covering such things as security, priority, and monitoring). Request models

are only required if the default TRANSID, CIRP, is unsuitable. (You may want

to segregate your IIOP workload by transaction ID, for example.)

Note: You can use the CREA CICS-supplied transaction to display the

transaction IDs associated with particular beans and bean-methods in

the CorbaServer. You can change the transaction IDs, apply the

changes, and save the changes to new REQUESTMODEL definitions.

v Deployed JAR files (DJARs), each of which includes the HFS filename of a

deployed JAR file. If you store your deployed JAR files in the CorbaServer’s

“pickup” directory, DJAR definitions are created and installed automatically

when the CorbaServer is installed (or when a subsequent scan takes place).

Note: “Setting up a logical EJB server” on page 219 contains more information

about these RDO definitions.

3. Security definitions are added to the external security manager. These specify

which roles can execute particular beans and methods, and which user IDs are

associated with each role.

4. The resource definitions are installed in CICS. Installing a DJAR definition

causes CICS to:

v Copy the deployed JAR file (and the classes it contains) to a “shelf” directory

on HFS. The shelf directory is where CICS keeps copies of installed

deployed JAR files.

v Read the deployed JAR from the shelf, parse its XML deployment descriptor,

and store the information it contains.

Note: If you store your deployed JAR files in the CorbaServer’s “pickup”

directory, DJAR definitions are installed automatically when the

CorbaServer is installed (or when a subsequent scan takes place).

5. A reference to the home interface class of each deployed bean is published in

an external namespace. The namespace is accessible to clients through JNDI.

If you specify AUTOPUBLISH(YES) on the CORBASERVER definition, the

contents of a deployed JAR file are automatically published to the namespace

when the DJAR definition is successfully installed into the CorbaServer.

Alternatively, you can issue a PERFORM CORBASERVER PUBLISH or

PERFORM DJAR PUBLISH command.

Figure 19 on page 216 shows the deployment process.

Chapter 16. What are enterprise beans? 215

Configuring CICS as an EJB server—overview

A CICS EJB server contains the following basic components:

The listener

The job of the listener is to listen for (and respond to) incoming TCP/IP

connection requests. An IIOP listener is configured by a TCPIPSERVICE

resource definition to listen on a specific TCP/IP port and to attach an IIOP

request receiver to handle each connection.

 Once an IIOP connection has been established between a client program and a

particular request receiver, all subsequent requests from the client program over

that connection flow to the same request receiver.

The request receiver

The request receiver analyzes the structured IIOP data. It passes the incoming

request to a request processor by means of a request stream, which is an

internal CICS routing mechanism. The object key in the request determines

whether the request must be sent to a new or an existing request processor.

 If the request must be sent to a new request processor, a CICS TRANSID is

determined by comparing the request data with templates defined in

REQUESTMODEL resource definitions. (If no matching REQUESTMODEL

definition can be found, the default TRANSID, CIRP, is used.) The TRANSID

defines execution parameters that are used by the request processor.

CSD

deploymentejb-jar
= dataflow

install write to shelfread

JNDI

HFS

deployed
JAR

development

enterprise
bean

publish

External
security
manager

namespace

CICS EJB Server

Figure 19. Deploying enterprise beans into a CICS EJB server. A deployment tool is used to perform code generation

on the ejb-jar file containing the bean classes. The transformed file is stored as a deployed JAR file on HFS. An RDO

definition of the deployed JAR file is created and installed in CICS, together with other definitions for TCP/IP services,

request models, and the CorbaServer execution environment. Security definitions are created on the external security

manager.

216 Java Applications in CICS

The request processor

The request processor is a transaction instance that manages the execution of

the IIOP request. It:

v Locates the object identified by the request

v For an enterprise bean request, calls the container to process the bean

method

v For a request for a stateless CORBA object, the ORB typically processes the

request itself (although the transaction service may also be involved).

For comprehensive information about listeners, request receivers, and request

processors, see Chapter 13, “The IIOP request flow,” on page 157.

Figure 20 shows a CICS logical EJB server. In this example, the listener regions

and AORs are in separate groups, connection optimization is used to balance client

connections across the listener regions, and distributed routing is used to balance

OTS transactions across the AORs.

Logical servers—enterprise beans in a sysplex

You can implement a CICS EJB server in a single CICS region. However, in a

sysplex it’s likely that you’ll want to create a server consisting of multiple regions.

Using multiple regions makes failure of a single region less critical and enables you

to use workload balancing. A CICS logical EJB server consists of one or more

CICS regions configured to behave like a single EJB server.

Typically, a CICS logical EJB server consists of:

Hostname
resolution

SYSPLEX

Distributed
routing

Cloned
listener
regions

Dynamic
DNS

Cloned CICS AORs

Logical EJB server

Client

IIOP

Figure 20. A CICS logical EJB server. The logical server consists of a set of cloned listener regions and a set of

cloned AORs. In this example, connection optimization by means of dynamic DNS registration is used to balance

client connections across the listener regions. Distributed routing is used to balance OTS transactions across the

AORs.

Chapter 16. What are enterprise beans? 217

v A set of cloned listener regions defined by identical TCPIPSERVICE definitions

to listen for incoming IIOP requests.

v A set of cloned application-owning regions (AORs), each of which supports an

identical set of enterprise bean classes in an identically-defined CorbaServer.

Note: The listener regions and AORs may be separate or combined into

listener/AORs.

Workload balancing in a sysplex

Workload balancing is implemented at two levels:

1. To balance client connections across the listener regions, you can use any of

the following methods:

v Connection optimization by means of dynamic Domain Name System (DNS)

registration.

v IP routing.

v A combination of connection optimization and IP routing.

With connection optimization by means of dynamic DNS registration, for

example, multiple CICS regions are started to listen for IIOP requests on the

same port (using virtual IP addresses). Each client IIOP connection request

contains a generic host name and port number. The generic host name in each

connection request is resolved to a real IP address by MVS DNS and Workload

Management (WLM) services.

2. To balance OTS transactions across the AORs, you can use either of the

following:

v CICSPlex SM

v A customized version of the CICS distributed routing program, DFHDSRP.

Important:

a. It is convenient to talk of balancing (or dynamically routing) OTS

transactions across AORs. Strictly speaking, however, what are

dynamically routed are method requests for enterprise beans

and CORBA stateless objects. There is a correlation between

routing method requests dynamically and routing OTS

transactions dynamically: CICS invokes the routing program for

requests for methods that will run under a new OTS transaction,

but not for requests for methods that will run under an existing

OTS transaction—these it directs automatically to the AOR in

which the existing OTS transaction runs. However, because

requests for methods that will run under no OTS transaction can

also be dynamically routed, the correlation is not exact.

b. We must be clear about what we mean by “new” and “existing”

OTS transactions. For the purposes of this chapter:

1) By a “new” OTS transaction we mean an OTS transaction

in which the target logical server is not already participating,

prior to the current method call; not necessarily an OTS

transaction that was started immediately before the method

call.

2) By an “existing” OTS transaction we mean an OTS

transaction in which the target logical server is already

participating, prior to the current method call; not simply an

OTS transaction that was started some time ago.

c. For example, if a client starts an OTS transaction, does some

work, and then calls a method on an enterprise bean with the

218 Java Applications in CICS

Supports transaction attribute, so far as the CICS EJB server is

concerned this is a “new” OTS transaction, because the server

has not been called within this transaction’s scope before. If the

client then makes a second and third method call to the same

target object, before committing its OTS transaction, these

second and third calls occur within the scope of the existing

OTS transaction.

Setting up a logical EJB server

Important

It is strongly recommended that all the regions in a logical EJB server—both

listeners and AORs—should be at the same level of CICS.

In simplified form, the steps involved in setting up a CICS logical EJB server to

support enterprise beans are:

 1. Create a set of cloned CICS Transaction Server for z/OS, Version 3 Release 1

listener regions.Each of the listener regions must have the IIOPLISTENER

system initialization parameter set to YES.

 2. Create a set of cloned CICS Transaction Server for z/OS, Version 3 Release 1

AORs. Each of the AORs must:

v Be set up to use JNDI

v Use the same JNDI initial context as the other AORs

v Be connected to all of the listener regions by MRO (not ISC)

v Have the IIOPLISTENER system initialization parameter set to NO.

 3. Create a shelf root directory on HFS. For example, you might create an HFS

directory called /var/cicsts/. To do this, you need an HFS userid with write

authority to the directory path to be used by CICS. Having created the shelf

directory, you must give the AORs’ userids full access to it—read, write, and

execute.

 4. Create a deployed JAR file (pickup) directory on HFS. For example, you might

create an HFS directory called /var/cicsts/pickup. The AORs must have at

least read access to it.

Note: If your AORs are to contain more than one CorbaServer execution

environment:

v You must create a separate pickup directory for each CorbaServer.

v It is recommended that you assign different sets of transaction IDs to

the objects supported by each CorbaServer. That is, each

CorbaServer in an AOR should support a different set of transaction

IDs. (To assign transaction IDs to bean methods, you use

REQUESTMODEL definitions—see step 5.)

 5. Create the following resource definitions. You can create them on a CSD that

is shared by all the regions in the logical server, copy them to all the CSDs

used by the regions, or add them to a CICSPlex SM Resource Description that

applies to all the regions. Optionally, you can use the CICS scanning

mechanism, the RM for enterprise beans, and the CREA CICS-supplied

transaction to create some of these definitions, as described below.

v A TCPIPSERVICE. On the PROTOCOL option, specify IIOP. On the SSL

option, specify NO. On the AUTHENTICATE option, specify NO. This means

that the service on this port will accept unauthenticated inbound IIOP

requests.

Chapter 16. What are enterprise beans? 219

v Some REQUESTMODEL definitions. In a single-region EJB server, these

are only required if the default TRANSID, CIRP, is unsuitable. In a

multi-region logical server, however, they are required if you want to route

method requests across several AORs. (The TRANSACTION definition for

CIRP specifies DYNAMIC(NO).) They are required too if, for example, you

want to segregate your IIOP workload by transaction ID.

The BEANNAME attribute of each REQUESTMODEL definition must

“match” (in a pattern-matching sense) the name of an enterprise bean in the

deployment descriptor in a deployed JAR file on HFS. The value of the

CORBASERVER attribute must match (either literally or in a

pattern-matching sense) the name of the CorbaServer on the

CORBASERVER definition.

Note:

a. Copy the transaction definition for the TRANSID named on your

REQUESTMODEL from that of CIRP. Set the DYNAMIC attribute

to YES. You can change any of the other attributes, but the

program name must be that of a JVM program whose JVMClass

is com.ibm.cics.iiop.RequestProcessor.

b. When the CorbaServer is operational, you can use the CREA

CICS-supplied transaction to display the transaction IDs

associated with particular beans and bean-methods in the

CorbaServer. You can change the transaction IDs, apply the

changes, and save the changes to new REQUESTMODEL

definitions.

v A CORBASERVER definition.

The value of the HOST option of the CORBASERVER definition must match

that of the IPADDRESS option of the TCPIPSERVICE definition. However, if

the TCPIPSERVICE specifies a value for DNSGROUP, the HOST option of

the CORBASERVER definition must specify a matching generic host name.

On the UNAUTH option, specify the name of the TCPIPSERVICE definition.

Note: You must always specify a value for the UNAUTH attribute when you

define a CorbaServer, even if you intend that all inbound requests to

the CorbaServer should be authenticated. This is because the port

number from the TCPIPSERVICE is used to construct Interoperable

Object References (IORs) that are exported from this logical server.

You can, by specifying the name of other TCPIPSERVICE definitions

on one or both of the CLIENTCERT or SSLUNAUTH options, cause

your listener regions to listen on other ports for different types of

authenticated inbound IIOP requests. For more information, see the

documentation of the CORBASERVER and TCPIPSERVICE resource

definitions.

On the SHELF option, specify the fully-qualified name of the HFS shelf

directory that you created in step 3. (Because the CORBASERVER

definition will be installed on all the AORs in the logical server, this

“high-level” shelf directory will be shared by all of them. Each AOR will

automatically create its own sub-directory beneath the shelf directory, and a

sub-directory for the CorbaServer beneath that.)

On the DJARDIR option, specify the fully-qualified name of the HFS

deployed JAR file directory (pickup directory) that you created in step 4. Like

the shelf directory, the pickup directory (or directories, if your AORs contain

multiple CorbaServers) will be shared by all the AORs in the logical server.

On each AOR, when a CORBASERVER definition is installed, CICS scans

220 Java Applications in CICS

the CorbaServer’s pickup directory and installs any deployed JAR files it

finds there. It copies them to its shelf sub-directory and dynamically creates

and installs DJAR definitions for them.

Specify AUTOPUBLISH(YES). This causes CICS to publish beans to the

namespace automatically, when a DJAR definition is successfully installed.

On the STATUS option, specify Enabled.

v FILE definitions for the following files required by CICS:

The EJB directory, DFHEJDIR

is a file containing a request streams directory which must be

shared by all the regions (listeners and AORs) in the logical EJB

server. (Request streams are used in the distributed routing of

method requests for enterprise beans and CORBA stateless

objects.) You must define DFHEJDIR as recoverable.

The EJB object Store, DFHEJOS

is a file of stateful session beans that have been passivated. It must

be shared by all the AORs in the logical EJB server. You must

define it as non-recoverable.

To share DFHEJDIR and DFHEJOS across multiple regions, you could, for

instance, use any of the following methods:

– Define them as remote files in a file-owning region (FOR)

– Define them as coupling facility data tables

– Use VSAM RLS.

There are sample FILE definitions for DFHEJDIR and DFHEJOS in the

CICS-supplied RDO group, DFHEJVS. There are sample coupling facility

FILE definitions for DFHEJDIR and DFHEJOS in the CICS-supplied RDO

group, DFHEJCF. There are sample VSAM RLS FILE definitions for

DFHEJDIR and DFHEJOS in the CICS-supplied RDO group, DFHEJVR.

(DFHEJVS, DFHEJCF, and DFHEJVR are not included in the default CICS

startup group list, DFHLIST.)

Note: For clarity’s sake, we’re assuming that there’s only one CorbaServer in

the logical server. To create another CorbaServer, you’ll need a second

CORBASERVER definition and another TCPIPSERVICE definition.

 6. Define the underlying VSAM data sets for DFHEJDIR and DFHEJOS. CICS

supplies sample JCL to help you do this, in the DFHDEFDS member of the

SDFHINST library.

 7. Using a deployment tool such as the Assembly Toolkit (ATK), take one or more

ejb-jar files and perform code generation on them to produce deployed JAR

files on HFS. Store the deployed JAR files in the CorbaServer’s pickup

directory.

 8. Start all the CICS regions. On each of the listener regions, the definitions to be

installed from the CSD are:

v The TCPIPSERVICE definition

v The REQUESTMODEL definitions

v The file definition for DFHEJDIR

On each of the AORs, the definitions to be installed from the CSD are:

v The TCPIPSERVICE definition.

v The REQUESTMODEL definitions.

Note: The REQUESTMODEL definitions in the AORs are required for

outbound requests to local objects. If a CORBA stateless object or

Chapter 16. What are enterprise beans? 221

enterprise bean makes a call to another object, and that object is

available on the local AOR, CICS does not send the request to a

listener region. Instead, it either runs the called method in the current

task (“tight loopback”) or starts another request processor in the local

AOR (“normal loopback”). Where normal loopback is used, it’s

preferable that the new request processor task should use the same

REQUESTMODEL as that used for the call to the first

object—otherwise, unpredictable results may occur. If your CORBA

stateless objects and enterprise beans make no outbound calls, the

REQUESTMODELs on the AOR are not strictly required.

v The CORBASERVER definition.

v The file definitions for DFHEJDIR and DFHEJOS.

Note: If you put your deployed JAR files in the shared pickup directory, DJAR

definitions are created and installed on the AORs automatically when

the CorbaServer is installed (or when a subsequent scan takes place).

It is only necessary to create static (CSD-installed) DJAR definitions for

deployed JAR files that you place in other HFS directories.

 9. On each AOR, when the CORBASERVER definition is installed, CICS scans

the pickup directory and installs any deployed JAR files it finds there. It copies

them to its shelf directory and dynamically creates and installs DJAR

definitions for them.

Note: You can put deployed JAR files in the pickup directory after CICS has

performed its initial scan at the time the CORBASERVER definition was

installed. If you do so, you can force CICS to perform another scan by

issuing a CORBASERVER PERFORM SCAN command. This command

can be issued using EXEC CICS, the CEMT master terminal

transaction, or the web-based resource manager for enterprise beans

(otherwise known as the RM for enterprise beans).

10. Because you specified AUTOPUBLISH(YES) on the CORBASERVER

definition, when the DJAR definitions are successfully installed the homes of

the enterprise beans will be automatically bound into the JNDI namespace.

If you had specified AUTOPUBLISH(NO), you would need to issue a

PERFORM CORBASERVER(CorbaServer_name) PUBLISH command on at

least one of the AORs. This command can be issued using EXEC CICS, the

CEMT master terminal transaction, the RM for enterprise beans, or via a

CICSPlex SM EUI or WUI View.

11. On the DSRTPGM system initialization parameter for the listener regions,

specify the name of the distributed routing program to be used. If you’re using

CICSPlex SM, specify the name of the CICSPlex SM routing program,

EYU9XLOP. Otherwise, specify the name of your customized routing program.

For information about the DSRTPGM system initialization parameter, see the

CICS System Definition Guide.

Figure 21 on page 223 shows the RDO definitions required to define a CICS logical

EJB server. It shows which definitions are required in the listener regions, which in

the AORs, and which in both.

222 Java Applications in CICS

Enterprise beans—what can a client do with a bean?

This section contains example code fragments that illustrate how a client program

can use an enterprise bean.

Get a reference to the bean’s home

In order to do anything with the bean, the client must obtain a reference to the

bean’s home interface. To do this, it looks up a well-known name via JNDI:

// Obtain a JNDI initial context

Context initContext = new InitialContext();

// Look up the home interface of the bean

Object accountBeanHome = initContext.lookup("JNDI_prefix/AccountBean");

// where:

// ’JNDI_prefix/’ is the JNDI prefix on the CORBASERVER definition

// ’AccountBean’ is the name of the bean in the XML deployment descriptor

// Convert to the correct type

AccountHome accountHome = (AccountHome)

 PortableRemoteObject.narrow(accountBeanHome,AccountHome.class);

Use the home interface

The client can use the bean’s home interface to:

v Create a new instance of the bean

v Delete an instance of the bean

CORBASERVERs
CorbaServer execution
environments

Stateful session
bean store file

DFHEJOS

DFHEJDIR
Request stream
directory file

Cloned CICS AORsCloned CICS listener regions

COMMON DEFINITIONS

REQUESTMODELs

TCPIPSERVICEs

AOR DEFINITIONSLISTENER DEFINITIONS

CICS logical EJB server

Deployed
JAR files

DJARs

SIT
IIOPLISTENER=YES

SIT
IIOPLISTENER=NO

Figure 21. Resource definitions in a CICS logical EJB server. The picture shows which definitions are required in the

listener regions, which in the AORs, and which in both.

Chapter 16. What are enterprise beans? 223

For example:

// Create two bean instances

Account anAccount = accountHome.create();

Account anotherAccount = accountHome.create("12345");

// Remove a bean instance

accountHome.remove("12345");

Use the component interface

The client can use the bean’s component interface to:

v Invoke the bean’s methods

v Delete the bean

For example:

// Use the bean

anAccount.deposit(1000000);

// Remove it

anAccount.remove();

Enterprise beans—what can a bean do?

An enterprise bean benefits from many services—such as lifecycle management

and security—that are provided implicitly by the EJB container, based on settings in

the deployment descriptor. This leaves the bean provider free to concentrate on the

bean’s business logic. This section looks at some of the things a bean can do.

Look up JNDI entries

A bean can use JNDI calls to retrieve:

v References to resources

v Environment variables

v References to other beans.

Access resource managers

A bean can:

v Obtain a connection to a resource manager

v Use the resources of the resource manager

v Close the connection.

Link to CICS programs

A bean can use JCICS or the CCI Connector for CICS TS to link to a CICS

program, that may be written in any of the CICS-supported languages and be

either local or remote. The bean provider can use the CCI Connector for CICS

TS to build beans that make use of the power of existing (non-Java) CICS

programs.

 The CCI Connector for CICS TS is described in Chapter 23, “The CCI

Connector for CICS TS,” on page 307.

Access files

A bean can use JCICS to read and write to files.

Call other beans

A bean can:

v Obtain references to the home and component interfaces of other bean

objects

v Invoke the methods of another bean object

v Be called from another bean object.

224 Java Applications in CICS

A bean can act as the client of another bean object, as the server of another

bean object, or as both.

 Bear in mind that a single CICS task (one instance of a transaction) cannot

contain more than one enterprise bean, because CICS treats an execution of

an enterprise bean as the start of a new task. You can create an application

that includes more than one enterprise bean, but the application will not operate

as a single CICS task.

Manage transactions

Optionally, a session bean can manage its own OTS transactions, rather than

use container-managed transactions. Alternatively, it may have its transaction

managed by its caller.

Benefits of EJB technology

Some of the benefits of using enterprise beans are:

Component portability

The EJB architecture provides a simple, elegant component container model.

Java server components can be developed once and deployed in any

EJB-compliant server.

Architecture independence

The EJB architecture is independent of any specific platform, proprietary

protocol, or middleware infrastructure. Applications developed for one platform

can be redeployed on other platforms.

Developer productivity

The EJB architecture improves the productivity of application developers by

standardizing and automating the use of complex infrastructure services such

as transaction management and security checking. Developers can create

complex applications by focusing on business logic rather than environmental

and transactional issues.

Customization

Enterprise bean applications can be customized without access to the source

code. Application behaviour and runtime settings are defined through attributes

that can be changed when the enterprise bean is deployed.

Multitier technology

The EJB architecture overlays existing infrastructure services.

Versatility and scalability

The EJB architecture can be used for small-scale or large-scale business

transactions. As processing requirements grow, the enterprise beans can be

migrated to more powerful operating environments.

In addition to these general benefits of using EJB technology, there are specific

benefits of using enterprise beans with CICS. For example:

Superior workload management

You can balance client connections across a set of cloned listener regions.

 You can use CICSPlex SM or the CICS distributed routing program to balance

OTS transactions across a set of cloned AORs.

Superior transaction management

Enterprise beans in a CICS EJB server benefit from CICS transaction

management services—for example:

v Shunting

Chapter 16. What are enterprise beans? 225

v System log management

v Performance optimizations

v Runaway detection

v Deadlock detection

v TCLASS management

v Monitoring and statistics

Access to CICS resources

You can, for example, use JCICS or the CCI Connector for CICS TS to build

enterprise beans that make use of the power of existing (non-Java) CICS

programs. The developer of a Java client application can use your server

components to access CICS—without needing to know anything about CICS

programming. See Chapter 23, “The CCI Connector for CICS TS,” on page 307.

Requirements for EJB support

Hardware

There are no specific hardware requirements for enterprise beans, over and above

those for CICS Transaction Server for z/OS, Version 3 Release 1 itself.

Software

The software requirements for enterprise beans are:

v IBM Software Developer Kit for z/OS, Java 2 Technology Edition, Version 1.4.2.

Note: There are two versions of the IBM Software Developer Kit for z/OS, Java

2 Technology Edition Version 1.4, a 31-bit and a 64-bit version. CICS TS

3.1 supports only the 31-bit version, which must be at the 1.4.2 level.

v A name server that supports the Java Naming and Directory Interface (JNDI)

Version 1.2. (The JNDI API provides directory and naming functions for Java

applications. It enables a client to locate an enterprise bean. The JNDI is

mapped to an external name server.) You can use either of the following:

A Lightweight Directory Access Protocol (LDAP) name server,

such as IBM SecureWay Directory, which is shipped with the IBM

SecureWay Security Server, an optional feature of OS/390 and z/OS.

 A distributed version of IBM SecureWay Directory is also available.

A Corba Object Services (COS) Naming Directory Service

such as that provided with IBM WebSphere Application Server Version 6.

This provides a transient CosNaming Service implementation. Being

transient means that its contents are lost when it is stopped or restarted;

as such, it is likely to be used only on a test system.

 Any industry-standard COS Naming Server that supports JNDI Version

1.2 can be used. For example, CICS also supports the COS Naming

Server supplied with IBM WebSphere Application Server Advanced

Edition for AIX, Version 3.5 and later.

WebSphere Application Server Version 5.0, or later

The required component is the Assembly Toolkit (ATK) for Windows,

which is used to deploy enterprise beans. (The Application Assembly Tool

226 Java Applications in CICS

|

|
|
|

|

|
|
|

(AAT), provided with WebSphere Application Server Version 4 and early

copies of WebSphere Application Server Version 5.0, can still be used

but is not supported).

Note: The ATK is included in WebSphere Studio Enterprise Developer

Version 5.1, which is shipped with CICS TS 3.1 as a marketing

promotion.

Chapter 16. What are enterprise beans? 227

|
|
|

|
|
|

228 Java Applications in CICS

Chapter 17. Setting up an EJB server

This chapter contains the following topics:

v “Setting up a single-region EJB server” tells you how to create a minimal CICS

EJB server consisting of a single listener/AOR.

v “Testing your EJB server” on page 236 tells you how to check that your

single-region EJB server is correctly configured.

v “Setting up a multi-region EJB server” on page 237 tells you how to develop your

single-region CICS EJB server into one consisting of multiple listener regions and

multiple AORs, that is capable of supporting workload balancing.

v “Migrating an EJB server to CICS Transaction Server for z/OS, Version 3

Release 1” on page 240 tells you how to update a back-level EJB server to CICS

TS for z/OS, Version 3.1.

Setting up a single-region EJB server

This section tells you how to set up a single-region CICS EJB server. The

single-region is both a listener region and an AOR. This minimal configuration can

be used as the basis for developing a multi-region CICS EJB server, as described

in “Setting up a multi-region EJB server” on page 237.

Important

v For clarity’s sake, we’re assuming that:

1. You start from a basic, non-customized, CICS Transaction Server for z/OS,

Version 3 Release 1 region.

2. There will be only one CorbaServer execution environment in your EJB

server.

v We recommend that, when creating your first EJB server, you use the default

JVM profile, DFHJVMCD, and the default JVM properties file, dfjjvmcd.props.

After you’ve got your first EJB server up and running, you may want to customize

your JVM profile and properties file. How to do this is described in “After running

the EJB IVP—optional steps” on page 235.

v This section doesn’t tell you how to deploy enterprise beans. Deployment is a

separate process that occurs after you’ve set up your EJB server. It’s described

in Chapter 21, “Deploying enterprise beans,” on page 291.

v The rest of this section is split into two parts:

– “Before running the EJB IVP” takes you as far as being able to run the EJB

Installation Verification Program, which tests that you have configured CICS

correctly as an EJB server and set up a name server correctly.

Note: By default the EJB IVP uses the lightweight tnameserv COS Naming

Server that is supplied with Java 1.3 and later. Therefore you don’t

need to have set up an enterprise-quality name server before running

the IVP. However, after you’ve set up your “real” name server, you can

use the IVP to test it.

– “After running the EJB IVP—optional steps” on page 235 describes some

optional ways in which you can customize your EJB server.

Before running the EJB IVP

The steps in this section enable you to run the EJB Installation Verification

Program, which tests that you have configured CICS correctly as an EJB server.

Actions are required on:

© Copyright IBM Corp. 1999, 2006 229

1. z/OS or Windows NT, depending on the type of name server that you use

2. HFS

3. CICS

Actions required on z/OS or Windows NT

To run the EJB IVP, you need a name server that supports the Java Naming and

Directory Interface (JNDI) Version 1.2. By default the IVP uses the lightweight

tnameserv COS Naming Server that is supplied with Java 1.3 and later. To start

tnameserv on the local host, enter the following command at the z/OS UNIX System

Services or Windows NT command prompt:

tnameserv -ORBInitialPort 2809

This causes the name server to listen for connections on TCP/IP port 2809. If this

port is already in use on your system, you will be asked to try again with a different

port.

Note: If you run firewall software, by default the firewall may block your specified

port. You must ensure that your firewall policy allows CICS and any EJB

client applications to communicate with the name server.

For information about choosing and setting up an enterprise-quality name server,

see “Enabling JNDI references” on page 169.

Actions required on HFS

To perform the tasks in this section, you need an HFS userid with write authority to

the directory path to be used by CICS.

Create the following directories on HFS, if they do not already exist. (If you have

previously configured CICS as an IIOP server, some of these directories may

already exist.) Remember that HFS names are case-sensitive.

1. A CICS working directory. Each CICS region needs a working directory. The

name is specified by the WORK_DIR parameter of the JVM profile. You need to

set the directory permissions so that the USERID the region runs under can

read and write to the directory. See “Giving CICS regions access to z/OS UNIX

System Services and HFS directories and files” on page 53 for guidance.

2. A shelf root directory. You can call your shelf directory anything you like.

However, it’s recommended that you create it somewhere under the /var

directory. For example, you might create an HFS directory called /var/cicsts/.

Having created the shelf directory, you must give the CICS region userid full

access to it—read, write, and execute. How to do this is described in “Giving

CICS regions access to z/OS UNIX System Services and HFS directories and

files” on page 53.

3. A deployed JAR file directory (also known as a pickup directory). You can call

your pickup directory anything you like. However, it’s recommended that you

create it somewhere under the /var directory. For example, you might create an

HFS directory called /var/cicsts/pickup. You must give the CICS region userid

at least read access to it.

Note:

a. If you were to install multiple CorbaServer execution environments

into your EJB server, you would need to create a separate pickup

directory for each one.

b. If you use the scanning mechanism (to install deployed JAR files

from the pickup directory) in a production region, be aware of the

230 Java Applications in CICS

security implications: specifically, the possibility of CICS command

security on DJAR definitions being circumvented. To guard against

this, we recommend that user IDs given write access to the HFS

deployed JAR file directory should be restricted to those given RACF

authority to create and update DJAR and CORBASERVER

definitions.

Actions required on CICS

Note that, if you have previously configured CICS as an IIOP server (to support

method calls to CORBA stateless objects), you may already have performed some

of these steps.

1. Install the IBM Software Developer Kit for z/OS, Java 2 Technology Edition,

Version 1.4.2, which provides a Java Virtual Machine (JVM) featuring persistent

reusable JVM technology. This is available from www.s390.ibm.com/java.

2. Set up CICS to support IIOP calls. (CICS uses the same RMI-over-IIOP protocol

to support client method requests for both CORBA stateless objects and

enterprise beans.) How to do this is described in “Setting up CICS for IIOP” on

page 181.

Bear in mind when reading “Setting up CICS for IIOP” on page 181 that:

v Because our single-region EJB server is a combined listener/AOR, you must

specify ’YES’ on the IIOPLISTENER system initialization parameter.

v CICS loads JVM profiles from the HFS directory that is specified by the

JVMPROFILEDIR system initialization parameter. When you install CICS, the

CICS-supplied default and sample JVM profiles are placed in the directory

/usr/lpp/cicsts/cicsts31/JVMProfiles, where cicsts31 is the value that

you chose for the CICS_DIRECTORY variable used by the DFHIJVMJ job

during CICS installation. The default value of CICS_DIRECTORY is

“cicsts31”. The default value of JVMPROFILEDIR is /usr/lpp/cicsts/
cicsts31/JVMProfiles. That is, the supplied setting for JVMPROFILEDIR

points to the default directory for the sample JVM profiles. If you chose a

different name during CICS installation for the directory containing the sample

JVM profiles (that is, if you chose a non-default value for the

CICS_DIRECTORY variable used by the DFHIJVMJ job), or if you have

created your own JVM profiles in a directory other than the samples directory,

you need to do one of the following:

– Change the value of the JVMPROFILEDIR system initialization parameter.

– Link to your profiles from the directory specified by JVMPROFILEDIR by

means of UNIX soft links.

v If you want to use your single-region server as the basis of a multi-region

server, you should ensure that the request streams directory file, DFHEJDIR,

and the EJB object store file, DFHEJOS, can be shared across multiple

regions. For this reason, it is recommended that you define them in one of

the following ways:

– As remote files in a file-owning region (FOR)

– As coupling facility data tables

– Using VSAM RLS.

v PROGRAM definitions are not required for enterprise beans as such. The

only PROGRAM definitions required are those for the request receiver and

request processor programs. The default request processor program—named

by the default CIRP transaction on REQUESTMODEL definitions—is

DFJIIRP. CIRP and DFJIIRP are defined in the supplied resource definition

Chapter 17. Setting up an EJB server 231

group DFHIIOP, as are CIRR and DFHIIRRS, the request receiver transaction

and program. DFHIIOP is included in the default CICS startup group list.

If you are using a JVM profile other than the default DFHJVMCD, you must

specify the name of your profile on the JVMPROFILE option of the

PROGRAM definition for the request processor program. (It is possible to use

a CEMT SET PROGRAM JVMPROFILE command to change the JVM profile

from that specified on the installed PROGRAM definition. However, if you

create your own JVM profile you are recommended to create new

TRANSACTION and PROGRAM definitions for the request processor

program, rather than change the default definitions.)

v You must specify the location of your name server on the

com.ibm.cics.ejs.nameserver property in all the JVM properties files that are

used by CORBA applications or enterprise beans—including the

dfjjvmcd.props properties file that CICS uses to to publish deployed JAR

files.

For detailed information about defining the location of your name server, see

the CICS System Definition Guide.

v You don’t need to install REQUESTMODEL or DJAR definitions at this stage,

because:

– The EJB IVP and EJB sample applications use the default

REQUESTMODEL transaction ID, CIRP.

– REQUESTMODEL definitions are most easily created by using the CREA

transaction after you have deployed your enterprise beans into CICS.

Deployment is a separate process that occurs after you have set up your

EJB server. It is described in Chapter 21, “Deploying enterprise beans,” on

page 291.

– DJAR definitions are typically created and installed by the CICS scanning

mechanism during deployment.

3. Create the following CICS resource definitions:

v A TCPIPSERVICE

v A CORBASERVER

The CICS-supplied sample group, DFH$EJB, contains TCPIPSERVICE and

CORBASERVER definitions suitable for running the EJB IVP. You must change

some of the attributes of these resource definitions to suit your own

environment. To do this, use the CEDA transaction or the DFHCSDUP utility.

a. Copy the sample group to a group of your own choosing. For example:

 CEDA COPY GROUP(DFH$EJB) TO(mygroup)

b. Display group mygroup and change the following attributes appropriately:

v On the TCPIPSERVICE resource definition, modify the PORTNUMBER

as necessary to a suitable TCP/IP port on your installation. The port

number that you specify must be authorized by your network

administrator.

Note:

1) Note that, on the supplied TCPIPSERVICE definition:

– The PROTOCOL option specifies IIOP. This is the required

protocol for method calls to enterprise beans and CORBA

stateless objects.

– The SSL option specifies NO.

– The AUTHENTICATE option defaults to NO. This means

that the service on this port will accept unauthenticated

inbound IIOP requests.

232 Java Applications in CICS

2) If you want to use your single-region server as the basis of a

multi-region server, as described in “Setting up a multi-region

EJB server” on page 237, you should specify a value for the

DNSGROUP option. This ensures that, in a multi-region server,

you will be able to use connection optimization, by means of

dynamic DNS registration, to balance client connections across

the listener regions.

3) For reference information about TCPIPSERVICE definitions,

see the CICS Resource Definition Guide.

v On the CORBASERVER resource definition:

1) Modify the SHELF option so that it specifies the fully-qualified name

of the HFS shelf directory that you created in step 2 of “Actions

required on HFS” on page 230.

Note: In a multi-region EJB server, because the CORBASERVER

definition will be installed on all the AORs this “high-level” shelf

directory will be shared by all of them. Each AOR will

automatically create its own sub-directory beneath the shelf

directory, and a sub-directory for the CorbaServer beneath

that.

2) Modify the DJARDIR option so that it specifies the fully-qualified name

of the HFS deployed JAR file directory (pickup directory) that you

created in step 3 of “Actions required on HFS” on page 230.

Note: In a multi-region EJB server, the pickup directory (or

directories, if the AORs contain multiple CorbaServers), like the

shelf directory, will be shared by all the AORs in the logical

server.

3) Set the HOST to your TCP/IP hostname.

Note:

1) Note that, on the supplied CORBASERVER definition:

– The UNAUTH option specifies the name of the

TCPIPSERVICE definition.

You must always specify a value for the UNAUTH attribute

when you define a CorbaServer, even if you intend that all

inbound requests to the CorbaServer should be

authenticated. This is because the port number from the

TCPIPSERVICE is used to construct Interoperable Object

References (IORs) that are exported from this logical

server. You can, by specifying the name of other

TCPIPSERVICE definitions on one or both of the

CLIENTCERT or SSLUNAUTH options, cause your listener

regions to listen on other ports for different types of

authenticated inbound IIOP requests. For more information,

see the documentation of the CORBASERVER and

TCPIPSERVICE definitions.

– The AUTOPUBLISH option specifies YES. This causes

CICS to publish beans to the namespace automatically,

when a DJAR definition is successfully installed.

– The STATUS option specifies Enabled.

2) Because we’re creating a single-region server, the value of the

HOST option of the CORBASERVER definition must match

Chapter 17. Setting up an EJB server 233

that of the IPADDRESS option of the TCPIPSERVICE

definition. (In a multi-region server, if dynamic DNS registration

is used to balance client connections across the listener

regions, the value of the HOST option must match the generic

host name specified on the DNSGROUP option of the

TCPIPSERVICE definition.)

3) For reference information about CORBASERVER definitions,

see the CICS Resource Definition Guide.

c. Install group mygroup to make these definitions known to CICS.

When the CORBASERVER definition is installed, CICS:

1) Scans the pickup directory that you specified on the DJARDIR option

2) Copies any deployed JAR files that it finds in the pickup directory to its

shelf directory

3) Dynamically creates and installs DJAR definitions for the deployed JAR

files (if any) that it found in the pickup directory

4) Because the CORBASERVER definition specifies AUTOPUBLISH(YES),

publishes any enterprise beans contained in the DJARs to the JNDI

namespace.

d. Set the status of the TCPIPSERVICE to OPEN:

CEMT SET TCPIPSERVICE(EJBTCP1) OPEN

On the CICS Console, you should see, among others, messages similar to

the following:

DFHEJ0701 CorbaServer EJB1 has been created.

DFHEJ5024 Scan commencing for CorbaServer EJB1, directory being scanned is

 DJARDIR_name.

DFHEJ5025 Scan completed for CorbaServer EJB1, 0 DJars created, 0 DJars

 updated.

DFHEJ1520 CorbaServer EJB1 is now accessible.

DFHSO0107 TCPIPSERVICE EJBTCP1 has been opened on port port_number at IP

 address xxx.xxx.xxx.xxx

where:

v DJARDIR_name is the name of your CorbaServer’s deployed JAR file

(“pickup”) directory.

v port_number is the number of the TCP/IP port used by your

CorbaServer.

v xxx.xxx.xxx.xxx is your CorbaServer’s IP address.

4. Set up CICS to use JNDI. To enable Java code running under CICS to issue

JNDI API calls, and CICS to publish references to the home interfaces of

enterprise beans, you must specify the location of the name server. (For an

LDAP name server there is additional information to be specified.) Specify the

URL and port number of your name server on the com.ibm.cics.ejs.nameserver

property in your JVM properties file.

For example, to use tnameserv, the lightweight COS Naming Directory Server

supplied with Java 1.3 and later, specify:

com.ibm.cics.ejs.nameserver=iiop://tnameserv.yourcompany.com:2809

where tnameserv.yourcompany.com is the address of the host on which you

started the tnameserv name server and 2809 is the port you selected.

If you are using an enterprise-quality LDAP server you might specify:

com.ibm.cics.ejs.nameserver=ldap://demojndi.yourcompany.com:389

234 Java Applications in CICS

For the other properties that are required, and the way to set up your LDAP

name server, see “Setting up an LDAP server” on page 170.

If you are using a standard COS Naming Directory Server you might specify:

com.ibm.cics.ejs.nameserver=iiop://demojndi.yourcompany.com:900

If you are using the COS Naming Directory Server supplied with WebSphere

Application Server Version 5 or later, you should specify:

com.ibm.cics.ejs.nameserver=iiop://demojndi.yourcompany.com:2809/domain/legacyRoot

Important: For detailed information about defining the location of the name

server, see the description of the com.ibm.cics.ejs.nameserver

property in the CICS System Definition Guide.

The location of the JVM properties file is specified on the JVMPROPS

statement in your JVM profile. (The JVM profile for the default request

processor program is DFHJVMCD. If you have followed the previous steps in

this section, the profile or profiles you are using should be in the HFS directory

specified by the JVMPROFILEDIR system initialization parameter.)

Important: These instructions have shown you how to set up a single-region EJB

server that contains a single CorbaServer execution environment. In a

production region that supports multiple applications, each of which

uses its own set of enterprise beans, you may require multiple

CorbaServers. To facilitate maintenance in a production region, you

should follow the guidelines on how to allocate beans to CorbaServers

and transaction IDs in Chapter 22, “Updating enterprise beans in a

production region,” on page 295.

Having completed the above steps, you can, if you wish, run the EJB Installation

Verification Program, which tests that you have configured CICS correctly as an

EJB server. For details of the EJB IVP, see Chapter 18, “Running the EJB IVP,” on

page 247. Alternatively, you can continue with the next section before running the

IVP.

After running the EJB IVP—optional steps

Optionally, to finish the setup of your complete EJB server, you can customize one

or more sample JVM profiles and JVM properties files, or create your own JVM

profiles and JVM properties files for use with enterprise beans, rather than using the

default JVM profile DFHJVMCD. DFHJVMCD can only be customized in limited

ways, because it is used for internal CICS programs, but other JVM profiles can be

customized as you want.

“Setting up JVM profiles and JVM properties files” on page 94 tells you how to

select a suitable JVM profile and JVM properties file and customize them, or if you

prefer, how to create your own JVM profile and JVM properties file based on one of

the supplied sample profiles. Follow the procedures in that section to customize or

create your JVM profile and JVM properties file.

When you have customized or created your JVM profile and JVM properties file, in

order for them to be used by enterprise beans:

1. Specify the name of your JVM profile on the JVMPROFILE option of the

PROGRAM definition for the request processor program. (The supplied

PROGRAM definition for the default request processor program, DFJIIRP,

specifies the default profile, DFHJVMCD.)

Chapter 17. Setting up an EJB server 235

You should create your own TRANSACTION and PROGRAM definitions for the

request processor program, as described in “Defining CICS resources” on page

183, rather than change the default definitions. Specify the name of your

TRANSACTION on REQUESTMODEL definitions for bean methods that are to

run under the new profile.

2. Place your profile in the HFS directory specified by the JVMPROFILEDIR

system initialization parameter.

Important: You must specify the location of your name server on the

com.ibm.cics.ejs.nameserver property in all the JVM properties files

that are used by CORBA applications or enterprise beans—including

the dfjjvmcd.props properties file that CICS uses to to publish

deployed JAR files. For detailed information about defining the location

of your name server, see the CICS System Definition Guide.

Testing your EJB server

This section tells you how to check that your single-region CICS EJB server is

configured correctly. It contains:

v “Running the EJB IVP”

v “Using the EJB “Hello World” sample”

v “Using the EJB Bank Account sample” on page 237

v “Using your own enterprise beans” on page 237

Running the EJB IVP

The easiest way to test your CICS EJB configuration, including that of your name

server, is to run the EJB Installation Verification Program (IVP) supplied with CICS.

The IVP consists of:

v A line-mode client program that runs in UNIX System Services (USS) on z/OS

v An enterprise bean running on the CICS EJB server

To run the IVP, you must have completed all the steps in “Before running the EJB

IVP” on page 229. You may or may not have completed the steps in “After running

the EJB IVP—optional steps” on page 235. Running the IVP successfully confirms

that external programs are able to invoke enterprise beans on your CICS EJB

server.

For details of the EJB IVP, see Chapter 18, “Running the EJB IVP,” on page 247.

Using the EJB “Hello World” sample

“Hello World” is a simple application consisting of an HTML form, a Java servlet and

Java Server Pages running on a Web server, and a CICS enterprise bean. It

requests input from the user, uses the enterprise bean to append the user’s input to

a standard message, and then displays the resulting string.

To run the EJB “Hello World” sample, you must have completed all the steps in

“Before running the EJB IVP” on page 229. You may or may not have completed

the steps in “After running the EJB IVP—optional steps” on page 235.

For details of the EJB “Hello World” application, and instructions on how to install it,

see “The EJB “Hello World” sample application” on page 253.

236 Java Applications in CICS

Using the EJB Bank Account sample

After you’ve run the Hello World” sample successfully, you might want to try

something more ambitious. The EJB Bank Account sample demonstrates how you

can use an enterprise bean to make CICS-controlled information available to Web

users. It extracts customer information from data tables and returns it to the user.

The sample consists of an HTML form, a Java servlet and Java Server Pages

running on a Web server, a CICS enterprise bean, two CICS COBOL server

programs, and some DB2 data tables. The enterprise bean uses the CCI Connector

for CICS TS to link to the CICS server programs, which access the DB2 data

tables.

To run the EJB Bank Account sample, you must have completed all the steps in

“Before running the EJB IVP” on page 229. You may or may not have completed

the steps in “After running the EJB IVP—optional steps” on page 235.

For details of the EJB Bank Account application, and instructions on how to install

it, see “The EJB Bank Account sample application” on page 261.

Using your own enterprise beans

After you’ve run the sample applications and established that your CICS EJB server

is working correctly, you’ll probably want to deploy your own enterprise beans into

CICS. For details of how to do this, see Chapter 21, “Deploying enterprise beans,”

on page 291.

Setting up a multi-region EJB server

This section tells you how to set up a CICS logical EJB server consisting of multiple

listener regions and multiple AORs. It assumes that you have already created a

single-region EJB server, as described in “Setting up a single-region EJB server” on

page 229.

Important: It is strongly recommended that all the regions in a multi-region EJB

server—both listeners and AORs—should be at the same level of

CICS.

1. Create a set of listener regions by cloning the single-region-server CICS. (All

the cloned regions share the CICS system definition file (CSD) of the

single-region server.) Optionally, you can discard the following resource

definitions from the listener regions, where they’re not required:

v CORBASERVER

v DJARs

v DFHEJOS

Leave the value of the IIOPLISTENER system initialization parameter set to

’YES’.

Note: If you use CICSPlex SM, you can define a CICS Group (CICSGRP)

containing all of the listener regions. This has the advantage that

resources can be associated (by means of a Resource Description) with

the Group rather than with individual regions. When a region is added to

or removed from the Group, the resources are automatically added to or

removed from the region.

2. Create a set of AORs by cloning the single-region-server CICS. (All the cloned

regions share the CSD of the single-region server.)

Chapter 17. Setting up an EJB server 237

|
|

Each of the AORs must use the same JNDI initial context as the other AORs.

Because the AORs are not listener regions, change the value of the

IIOPLISTENER system initialization parameter to ’NO’.

Note: If you use CICSPlex SM, you can define a CICS Group (CICSGRP)

containing all of the AORs. When a region is added to or removed from

the Group, the resources are automatically added to or removed from the

region.

Figure 22 on page 240 shows which definitions are required in the listener

regions, which in the AORs, and which in both.

3. Connect each of the AORs to all of the listener regions by MRO (not ISC). For

information about how to define MRO connections between CICS regions, see

the CICS Intercommunication Guide.

If you use CICSPlex SM, you can significantly reduce the number of

CONNECTION and SESSION definitions required (and the cost of maintaining

them) by defining SYSLINKs from a single AOR to all of the listener regions.

(CICSPlex SM automatically creates the reciprocal connections from the

listeners to the AOR.) Use the SYSLINKs as models for the connections from

the other AORs.

4. Ensure that the EJB Directory file, DFHEJDIR, is shared by all the regions in

the EJB server. If you defined DFHEJDIR to the single-region EJB server in the

way suggested (that is, as a remote file, a coupling facility data table, or as

using VSAM RLS) the file should be shared automatically across the cloned

regions of the multi-region server.

Note: Ensure that the CICS region that owns the DFHEJDIR file is started

before the other regions that access it, particularly the AORs. If you

don’t, attempts to install CORBASERVER and DJAR definitions on the

other AORs will fail with message DFHEJ0736.

5. Ensure that the EJB Object Store file, DFHEJOS, is shared by all the AORs in

the EJB server. If you defined DFHEJOS to the single-region EJB server in the

way suggested, the file should be shared automatically across all the cloned

regions of the multi-region server. (Optionally, you can delete the definition of

DFHEJOS from the listener regions, where it’s not required.)

6. To balance client connections across the listener regions, use connection

optimization by means of dynamic DNS registration. How to set this up is

described in “Domain Name System (DNS) connection optimization” on page

160.

7. Arrange for method requests for enterprise beans to be dynamically routed

across the AORs. You can use either of the following:

a. CICSPlex SM. How to use CICSPlex SM to route method requests for

enterprise beans is described in Chapter 26, “CICSPlex SM with enterprise

beans,” on page 351.

b. A customized version of the CICS distributed routing program, DFHDSRP.

How to write a distributed routing program to route method requests for

enterprise beans and CORBA stateless objects is described in the CICS

Customization Guide.

On the DSRTPGM system initialization parameter for the listener regions,

specify the name of the distributed routing program to be used. If you’re using

CICSPlex SM, specify the name of the CICSPlex SM routing program,

EYU9XLOP. Otherwise, specify the name of your customized routing program.

For information about the DSRTPGM system initialization parameter, see the

CICS System Definition Guide.

238 Java Applications in CICS

Remember:

a. To route method requests for enterprise beans dynamically, the

TRANSACTION definition for the transaction named on your

REQUESTMODEL definitions must specify DYNAMIC(YES).

The default transaction named on REQUESTMODEL

definitions, CIRP, is defined as DYNAMIC(NO). We

recommend that you take a copy of the TRANSACTION

definition for CIRP, change the DYNAMIC setting, and save the

definition under a new name. Then name your new transaction

on REQUESTMODEL definitions. (The easiest way to create

REQUESTMODEL definitions is to use the CREA transaction

after you have deployed your enterprise beans into CICS.)

b. The “common” transaction definition specified on the

DTRTRAN system initialization parameter, and used for

terminal-initiated transaction routing requests if no

TRANSACTION definition is found, is never associated with

method requests for enterprise beans. If, on the listener region,

there is no REQUESTMODEL definition that matches the

request, the request runs under the CIRP transaction (which

specifies DYNAMIC(NO).

c. In Figure 22 on page 240, the REQUESTMODEL definitions in

the AORs are required for outbound requests to local objects.

If a CORBA stateless object or enterprise bean makes a call to

another object, and that object is available on the local AOR,

CICS does not send the request to a listener region. Instead, it

either runs the called method in the current task (“tight

loopback”) or starts another request processor in the local AOR

(“normal loopback”). Where normal loopback is used, it’s

preferable that the new request processor task should use the

same REQUESTMODEL as that used for the call to the first

object—otherwise, unpredictable results may occur. If your

CORBA stateless objects and enterprise beans make no

outbound calls, the REQUESTMODELs on the AOR are not

strictly required.

Important: These instructions have shown you how to set up a multi-region EJB

server in which each region contains a single CorbaServer execution

environment. In production regions that support multiple applications,

each of which uses its own set of enterprise beans, you may require

multiple CorbaServers. To facilitate maintenance in production regions,

you should follow the guidelines on how to allocate beans to

CorbaServers and transaction IDs in Chapter 22, “Updating enterprise

beans in a production region,” on page 295.

Chapter 17. Setting up an EJB server 239

Migrating an EJB server to CICS Transaction Server for z/OS, Version

3 Release 1

Upgrading a single-region CICS EJB/CORBA server

To migrate a single-region CICS EJB/CORBA server to CICS Transaction Server for

z/OS, Version 3 Release 1:

1. Quiesce the workload.

2. Shut down the region.

3. Upgrade the region to CICS Transaction Server for z/OS, Version 3 Release 1,

following the standard migration procedures described in CICS Transaction

Server for z/OS Migration from CICS TS Version version_number, where

version_number is the version number of your back-level CICS release.

4. Review “Migration tips” on page 245, which describes some of the changes in

EJB/CORBA support between CICS TS for z/OS, Version 2.2 and CICS

Transaction Server for z/OS, Version 3 Release 1. You should also refer to

“Setting up a single-region EJB server” on page 229, which describes in detail

how to set up a single-region EJB server in CICS TS for z/OS, Version 3.1.

5. Restart the region.

6. Republish the Interoperable Object References (IORs) for all the enterprise

beans and stateless CORBA objects processed by the server. To do this, issue

a PERFORM CORBASERVER(CorbaServer_name) PUBLISH command. This

command can be issued using EXEC CICS, CEMT, the Resource Manager for

CORBASERVERs
CorbaServer execution
environments

Stateful session
bean store file

DFHEJOS

DFHEJDIR
Request stream
directory file

Cloned CICS AORsCloned CICS listener regions

COMMON DEFINITIONS

REQUESTMODELs

TCPIPSERVICEs

AOR DEFINITIONSLISTENER DEFINITIONS

CICS logical EJB server

Deployed
JAR files

DJARs

SIT
IIOPLISTENER=YES

SIT
IIOPLISTENER=NO

Figure 22. Resource definitions in a multi-region CICS EJB server. The picture shows which definitions are required in

the listener regions, which in the AORs, and which in both.

240 Java Applications in CICS

|
|
|

enterprise beans, or from a CICSPlex SM EUI or WUI view. Remember to issue

a separate command for each CorbaServer in the region.

Upgrading a multi-region CICS EJB/CORBA server

To migrate a multi-region CICS EJB/CORBA server to CICS Transaction Server for

z/OS, Version 3 Release 1, you can use any of the following methods:

1. Shut down the server, upgrade all the regions, and restart the server.

This approach is very similar to that described in “Upgrading a single-region

CICS EJB/CORBA server” on page 240, except that:

a. You must upgrade all the regions to CICS Transaction Server for z/OS,

Version 3 Release 1 before restarting the server. Again, follow the standard

migration procedures described in CICS Transaction Server for z/OS

Migration from CICS TS Version version_number, where version_number is

the version number of your back-level CICS release.

b. You should refer to “Setting up a multi-region EJB server” on page 237,

which describes in detail how to set up a multi-region EJB server in CICS

TS for z/OS, Version 3.1.

c. To republish the IORs of enterprise beans and stateless CORBA objects,

issue a PERFORM CORBASERVER(CorbaServer_name) PUBLISH

command on at least one of the AORs. Remember to issue a separate

command for each CorbaServer in the AOR.

The advantage of this approach is its relative simplicity, compared to solutions 2

and 3. Its main disadvantage is that the server’s applications are unavailable

during the upgrade process.

2. Create a separate, CICS TS for z/OS, Version 3.1, logical server and

gradually migrate applications from the old, back-level, server to the new

one.

The advantages of this approach are:

a. Applications are kept available throughout the upgrade process.

b. You can start with a minimal CICS TS for z/OS, Version 3.1 server, perhaps

consisting of just two regions—one listener and one AOR. As more

applications are migrated, you can expand the CICS TS for z/OS, Version

3.1 server and simultaneously reduce the number of regions in the

back-level server, thereby conserving resources.

c. It is probably easier to implement than solution 3.

To set up a new CICS TS for z/OS, Version 3.1 multi-region EJB server, follow

all the steps in “Setting up a single-region EJB server” on page 229 and “Setting

up a multi-region EJB server” on page 237.

3. Perform a “rolling upgrade”.

In a “rolling upgrade”, one region at a time is upgraded from the previous to the

current level of CICS, while keeping the server operational.

The advantages of this approach are:

a. Applications are kept available throughout the upgrade process.

b. Unlike solution 2, at no stage is it necessary to set up additional CICS

regions.

This method is described in detail in “Performing a “rolling upgrade”” on page

242.

Chapter 17. Setting up an EJB server 241

|
|
|

|

|

Performing a “rolling upgrade”

Important

The mixed level of operation described in this section, in which different CICS

regions in the same logical server are at different levels of CICS, is intended to be

used only for rolling upgrades. It should not be used permanently, because it

increases the risk of failure in some interoperability scenarios. The normal,

recommended, mode of operation is that all the regions in a logical sever should be

at the same level of CICS and Java.

This section describes how to perform a “rolling upgrade” of a multi-region CICS

EJB/CORBA server to CICS Transaction Server for z/OS, Version 3 Release 1. The

process consists of the following steps:

1. Checking that your logical server meets the criteria for a “rolling upgrade”. See

“Requirement.”

2. “Preliminary steps”

3. “Migrating the listener regions” on page 243

4. “Migrating the AORs” on page 243

5. “Tidying up” on page 245

Requirement:

Your server must consist of separate listener and application-owning regions. This is

because the migration process requires all of the listener regions to be updated

before any of the application-owning regions (AORs). If you run composite

listener/AORs, which act both as request receivers and request processors, this

cannot be done. And if you don’t upgrade all the listeners before any of the AORs,

your IIOP client applications may receive transient failures during the migration

window, depending on the CICS version of the listener region that receives the

request.

Preliminary steps:

1. Review “Migration tips” on page 245.

2. If you are migrating from CICS TS 2.2, ensure that APAR PQ 79565 is installed

in all your CICS TS 2.2 regions. This APAR improves CICS TS 2.2 diagnostics,

should CICS TS for z/OS, Version 3.1 workload arrive at a CICS TS 2.2 region.

It also allows a CICS TS 2.2 request processor (AOR) to receive work from a

CICS TS for z/OS, Version 3.1 request receiver (listener).

3. Set the AUTOPUBLISH option on all your CORBASERVER definitions to NO.

Setting a CorbaServer to autopublish IORs into the JNDI name spaces could

disrupt the migration process.

4. If you use a distributed routing program to balance method requests for

enterprise beans and CORBA stateless objects across the AORs of your logical

server, customize your routing program to use the DYRLEVEL parameter.

DYRLEVEL is a migration aid. It contains the level of CICS required in the

target AOR to successfully process the routed request. (Note that this is the

specific—not the minimum—level of CICS required to process the request

successfully.) In a mixed-level logical server, when your routing program is

invoked for route selection (or route selection error), it can use the value of

DYRLEVEL to determine whether to route the request to a back-level or CICS

TS for z/OS, Version 3.1 AOR.

For details of how to use DYRLEVEL, and definitive information about writing a

distributed routing program, see the CICS Customization Guide.

242 Java Applications in CICS

|

|

Install your customized program on all the regions (both listeners and AORs) of

the EJB server.

If you use CICSPlex SM to workload-balance method requests you can skip this

step. The CICSPlex SM routing program supplied with CICS Transaction Server

for z/OS, Version 3 Release 1 checks the DYRLEVEL field and routes requests

accordingly.

Migrating the listener regions:

1. Quiesce a listener region and bring it down.

2. Upgrade this single listener region to CICS Transaction Server for z/OS, Version

3 Release 1, following the standard migration procedures described in CICS

Transaction Server for z/OS Migration from CICS TS Version version_number,

where version_number is the version number of your back-level CICS release.

Important:

a. If you upgrade a CSD from CICS TS 2.2 to CICS TS for z/OS,

Version 3.1 level, if it is shared by any CICS TS 2.2 regions

other than that being upgraded, include the DFHCOMPA

resource group (supplied with CICS TS for z/OS, Version 3.1) in

the startup group list of these regions. DFHCOMPA is a

compatibility group that provides a definition of DFJIIRP, the

default request processor program, that can be used by a CICS

TS 2.2 region when sharing a CICS TS for z/OS, Version 3.1

CSD.

This step is necessary because, in CICS TS for z/OS, Version

3.1, the JVM profile used by DFJIIRP is DFHJVMCD. In CICS

TS 2.2, it is DFHJVMPR.

b. At this stage, don’t enable any new, CICS TS for z/OS, Version

3.1-specific, options on resource definitions, because they won’t

be understood by the back-level AORs. Use of these new

features must wait until the whole logical server—both listener

regions and AORs—has been upgraded.

For definitive information about setting up a listener region in CICS TS for z/OS,

Version 3.1, refer to Chapter 14, “Configuring CICS for IIOP,” on page 167.

3. Bring the listener back up. This region is now at the newer version of CICS but

may continue to participate as part of the back-level logical server.

4. Repeat steps 1 through 3 for all of the listener regions in the logical server.

Migrating the AORs:

1. Quiesce an AOR and bring it down.

2. Update this single AOR to CICS Transaction Server for z/OS, Version 3 Release

1, following the standard migration procedures described in CICS Transaction

Server for z/OS Migration from CICS TS Version version_number.

If you are migrating from CICS TS 2.2, part of this will involve updating the JVM

profile used by the CorbaServers. Note the changes to JVM profiles and

property files that were introduced in CICS TS 2.3, as described in “Migration

tips” on page 245.

Important:

a. If you upgrade a CSD from CICS TS 2.2 to CICS TS for z/OS,

Version 3.1 level, if it is shared by any CICS TS 2.2 regions

other than that being upgraded, include the DFHCOMPA

Chapter 17. Setting up an EJB server 243

|
|
|

|

|

|
|

|
|
|
|

|

resource group (supplied with CICS TS for z/OS, Version 3.1) in

the startup group list of these regions.

b. At this stage, don’t enable any new, CICS TS for z/OS, Version

3.1-specific, options on resource definitions.

3. Bring the AOR back up again.

4. Ensure that all TCPIPSERVICEs are open both in this AOR and in the listener

regions.

5. Use the CEMT PERFORM DJAR PUBLISH command to re-publish the IORs of

one or more enterprise beans in CICS TS for z/OS, Version 3.1 format. For

each CorbaServer, select one or more deployed JAR files to re-publish. When

choosing deployed JAR files to re-publish, bear the following in mind:

v Try to pick DJARs whose entire work load can be processed by a single

region.

v Wherever possible, all the beans used by an application should be migrated

at the same time. For example, if bean A is known to call bean B the two

beans should be migrated together. If this is not possible, bean A should be

migrated first.

This is particularly important if you are migrating from CICS TS 2.2 and the

beans are installed in the same CorbaServer but in different AORs that are at

different levels of CICS. This is because a CICS TS 2.2 region cannot do a

JNDI look up of an object in a CICS TS for z/OS, Version 3.1 region if both

objects are in the same CorbaServer. For example, bean A in CorbaServer

EJB1 in a CICS TS 2.2 AOR cannot look up bean B in CorbaServer EJB1 in

a CICS TS for z/OS, Version 3.1 AOR.

Note: If A and B are installed in different CorbaServers, or in AORs that are

at the same level of CICS, they can be migrated separately.

Re-publish the selected DJARs to the JNDI name space, in the same location

as that used by the back-level AORs.

At this point :

v This AOR is ready to accept workload.

v The logical server contains a pool of back-level AORs and a pool (currently

containing only one region) of CICS TS for z/OS, Version 3.1 AORs.

v Any clients that look up the IOR of a re-published bean in the name space

get the new IOR in CICS TS for z/OS, Version 3.1 format. Your customized

routing program or CICSPlex SM directs such requests to the CICS TS for

z/OS, Version 3.1 AOR.

v Any clients that have a stale, cached, IOR for a bean that’s been

re-published are still able to use the bean. Your customized routing program

or CICSPlex SM directs such old-format requests to one of the back-level

AORs.

Note: Many application servers cache the results of JNDI lookups locally to

increase performance, so you may find that these caches have to be

purged before the new IORs are used. Over a period of time, requests

for re-published enterprise beans should move gradually from the pool

of back-level AORs to the pool of CICS TS for z/OS, Version 3.1

AORs.

6. Repeat steps 1 through 5 for all of the AORs in the logical server. As each AOR

is upgraded:

244 Java Applications in CICS

|

|

|

|

|

v Re-publish a different set of enterprise beans, so that gradually more and

more beans are supported by the pool of CICS TS for z/OS, Version 3.1

regions.

v It becomes less important, when selecting deployed JAR files to re-publish, to

choose those whose entire work load can be processed by a single

region—because there are more AORs in the CICS TS for z/OS, Version 3.1

pool.

Eventually, all the AORs will be running CICS TS for z/OS, Version 3.1 and

processing 100% of the workload.

Tidying up:

1. If required, reset the AUTOPUBLISH option on your CORBASERVER definitions

to YES.

2. Enable any CICS TS for z/OS, Version 3.1-specific resource definition options

that you want to use.

Migration tips

This section briefly lists some of the ways in which EJB and Java support has

changed between CICS TS for z/OS, Version 2.2 and CICS Transaction Server for

z/OS, Version 3 Release 1. All these changes are described in detail in Chapter 9,

“Setting up Java support,” on page 53. They are listed here, together with some

general tips, as a reminder of things to be aware of when migrating an EJB server

to CICS TS for z/OS, Version 3.1.

1. In CICS TS 2.2, JVM profiles were stored in a PDS member. In all later

releases, including CICS TS for z/OS, Version 3.1, they are stored in the HFS

directory pointed to by the JVMPROFILEDIR system initialization parameter.

2. The default JVM profile used by CorbaServers in CICS TS 2.2 was

DFHJVMPR. In all later releases, including CICS TS for z/OS, Version 3.1, it is

DFHJVMCD.

3. The default JVM properties file used by CorbaServers in CICS TS 2.2 was

dfjjvmpr.props. In all later releases, including CICS TS for z/OS, Version 3.1, it

is dfjjvmcd.props.

4. Don’t enable any new, CICS TS for z/OS, Version 3.1-specific, attributes on

resource definitions during the “rolling upgrade” process. Use of these new

features must wait until the whole logical server—both listener regions and

AORs—has been upgraded.

5. From a CICS TS for z/OS, Version 3.1 AOR, you can re-publish a deployed JAR

file that has previously been published from an earlier release of CICS without

first retracting it. The IORs of the beans are updated to 3.1 format. However,

you cannot do the reverse. From an earlier release of CICS, before

re-publishing a deployed JAR file that has previously been published from a

CICS TS for z/OS, Version 3.1 AOR you must first retract it; furthermore,

because earlier CICS releases do not understand the format of CICS TS for

z/OS, Version 3.1 IORs, you must retract it from a CICS TS for z/OS, Version

3.1 AOR.

Bear this in mind if, for any reason, you need to back out the upgrade of one or

more AORs. If you ever need to revert the IORs of enterprise beans that have

been published from a CICS TS for z/OS, Version 3.1 AOR to an earlier level of

CICS (so that they can be routed to a back-level AOR once more) you must:

a. Retract the deployed JAR file from a CICS TS for z/OS, Version 3.1 AOR

b. Publish the deployed JAR file from a back-level AOR

Chapter 17. Setting up an EJB server 245

|
|

|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|

Trying to re-publish the beans without retracting them first, or trying to retract

them from the wrong level of CICS, results in an InvalidUserKeyException: Bad

version number exception.

Potential problems

1. After the EJB server has been migrated to CICS TS for z/OS, Version 3.1, some

clients may have stale, cached, IORs that point to the old server. This is

because some application servers cache the results of JNDI lookups locally to

increase performance. You may find that these caches have to be purged

before the new IORs are used.

2. CICS TS for z/OS, Version 3.1 and CICS TS 2.3 support GIOP 1.2, whereas

CICS TS 2.2 supports only GIOP 1.1. If a GIOP 1.2 message is received in a

CICS TS 2.2 region it will be rejected. Under normal conditions this should

never happen, because the maximum version of GIOP supported by CICS is

stored in the IORs that CICS publishes. If a client knows that a given server

only supports GIOP 1.1, it will never attempt to use anything more recent when

communicating with that server. This means that CICS TS for z/OS, Version 3.1

can send GIOP messages to CICS TS 2.2.

The problem will only occur if the client thinks it is talking to CICS TS for z/OS,

Version 3.1 (or CICS TS 2.3) but its message is routed to a CICS TS 2.2 region.

This will only happen if CICS TS 2.2 and CICS TS for z/OS, Version 3.1 regions

are set up as sibling request processors (AORs) in the same logical server.

(This is one reason why mixed-level logical servers are not recommended in

CICS.) During a “rolling upgrade”, the logical server does, of course, contain

mixed-level request processors. However, if you follow the steps in “Performing

a “rolling upgrade”” on page 242, the problem (of a GIOP 1.2 message being

received in a CICS TS 2.2 region) will not occur.

3. CICS TS for z/OS, Version 3.1 and CICS TS 2.3 use a different format of IOR

from CICS TS 2.2. If a GIOP 1.1 message intended for CICS TS for z/OS,

Version 3.1 is routed to a CICS TS 2.2 region, the CICS TS 2.2 region will reject

the request due to a unknown IOR format being in use. If all the regions in an

EJB/CORBA server are at the same level of CICS and Java, this error cannot

occur.

During a “rolling upgrade”, the logical server does, of course, contain

mixed-level regions. However, if you follow the steps in “Performing a “rolling

upgrade”” on page 242, this problem will not occur.

246 Java Applications in CICS

|
|
|

|

|

|

Chapter 18. Running the EJB IVP

The EJB Installation Verification Program (IVP) is a simple application that CICS

installers can use to verify the CICS EJB environment. It uses a simple client

program that does not require the use of a Web server. The IVP consists of:

v A line-mode client program that runs in UNIX System Services on z/OS

v A stateless session enterprise bean running on the CICS EJB server

The IVP tests:

v The CICS JVM (including its reusability).

v Optionally, your “real”, enterprise-level, name server. (By default, the IVP uses

the lightweight tnameserv COS Naming Server supplied with Java.)

v The EJB server’s ability to run a simple enterprise bean.

v HFS settings (including file access permissions).

Once configured, the client:

1. Performs a JNDI lookup to find the published reference to a specific enterprise

bean in the JNDI namespace

2. Creates a new instance of the enterprise bean in CICS

3. Calls a remote method on the bean-instance

The rest of the chapter contains the following topics:

v “Prerequisites for the EJB IVP”

v “Installing the EJB IVP” on page 248

v “Running the EJB IVP” on page 250

Prerequisites for the EJB IVP

To run the EJB IVP, you need:

v A UNIX System Services userid and file editor.

v A CICS EJB server. The way to set one up is described in “Setting up a

single-region EJB server” on page 229.

v A name server that supports the Java Naming and Directory Interface (JNDI)

Version 1.2 or later. The way to set up an enterprise-quality name server is

described in “Enabling JNDI references” on page 169. Alternatively, you can use

the lightweight tnameserv COS Naming Server supplied with Java.

Note:

1. We’re assuming that you’re testing a single-region CICS EJB server.

2. For the purposes of running the IVP, you need only to have completed

the steps in “Before running the EJB IVP” on page 229. You may or may

not have completed the steps in “After running the EJB IVP—optional

steps” on page 235.

3. Before starting, make sure that the storage size for your TSO/E session

is at least 6000KB. To increase the storage size, at the standard TSO/E

logon screen change the value in the SIZE field.

© Copyright IBM Corp. 1999, 2006 247

Installing the EJB IVP

Installing the EJB IVP requires actions on:

1. HFS

2. CICS

3. The client, on z/OS UNIX System Services

HFS setup

The IVP uses the same CICS enterprise bean as the EJB “Hello World” sample

application described in “The EJB “Hello World” sample application” on page 253.

Thus, on HFS, you must copy the HelloWorldEJB.jar deployed JAR file from the

EJB samples directory to the deployed JAR file (“pickup”) directory that you created

in “Before running the EJB IVP” on page 229.

Note: Both the source and executable code of the enterprise bean is in the

HelloWorldEJB.jar file.

The samples directory is: /usr/lpp/cicsts/cicsts31/samples/ejb/helloworld,

where cicsts31 is the value of the CICS_DIRECTORY variable used by the

DFHIJVMJ job during CICS installation.

Remember that HFS names are case-sensitive.

CICS setup

1. If EJB role-based security is active in your CICS region, you must turn it off

before running the IVP. That is, if both the SEC and XEJB system initialization

parameters currently specify ’YES’, you must set XEJB to ’NO’ and restart

CICS.

2. The CICS-supplied sample resource group, DFH$EJB, contains

TCPIPSERVICE and CORBASERVER definitions suitable for running the IVP.

You must change some of the attributes of these resource definitions to suit

your own environment, and install the changed definitions into CICS. You should

already have done this, as part of the task of setting up your EJB server. If you

have not, follow the step-by-step instructions in “Actions required on CICS” on

page 231.

3. Issue a CEMT PERFORM CORBASERVER(EJB1) SCAN command.

CICS:

a. Scans the pickup directory that you specified on the DJARDIR option of the

CORBASERVER definition

b. Copies the HelloWorldEJB.jar deployed JAR file that it finds in the pickup

directory to its shelf directory

c. Dynamically creates and installs a DJAR definition for HelloWorldEJB.jar

d. Because the CORBASERVER definition specifies AUTOPUBLISH(YES),

publishes the enterprise bean contained in HelloWorldEJB.jar to the JNDI

namespace.

4. If you have not already done so while setting up your CorbaServer, set the

status of the TCPIPSERVICE to OPEN:

CEMT SET TCPIPSERVICE(EJBTCP1) OPEN

On the CICS Console, you should see, among others, messages similar to the

following:

DFHEJ5024 Scan commencing for CorbaServer EJB1, directory being scanned is

 DJARDIR_name.

DFHEJ5030 New DJar HelloWorldEJB is being created during a scan against

248 Java Applications in CICS

CorbaServer EJB1.

DFHEJ0901 DJar HelloWorldEJB within CorbaServer EJB1 has been created.

DFHEJ5025 Scan completed for CorbaServer EJB1, 1 DJars created, 0 DJars updated.

DFHEJ5032 DJar HelloWorldEJB is having its contents automatically published to

 the namespace.

DFHEJ5009 Published bean HelloWorld to JNDI server

 iiop://nameserver.location.company.com:2809 at location samples.

DFHEJ1540 DJar HelloWorldEJB and the Beans it contains are now accessible.

where:

v DJARDIR_name is the name of your CorbaServer’s deployed JAR file

(“pickup”) directory.

v iiop://nameserver.location.company.com:2809 is the URL and port number

of your name server. In this example, a COS Naming Server is used.

Configuring the client

The source code of the client application is in the HelloWorldCLI.jar file.

On z/OS UNIX System Services, you must:

1. Copy the runEJBIVP script to a working directory. The original runEJBIVP script is

located, with the IVP sample, in the following directory:

/usr/lpp/cicsts/cicsts31/samples/ejb/helloworld

where cicsts31 is the value of the CICS_DIRECTORY variable used by the

DFHIJVMJ job during CICS installation.

2. Edit your copy of runEJBIVP script as follows. This is necessary so that the

client can locate the published enterprise bean in the JNDI namespace. (A

typical client will not have access to the CICS JVM profile and JVM properties

file.)

a. Modify the JAVA_HOME variable to your IBM SDK 1.4.2 installation

directory, as indicated by the comments in the script. The line to be changed

is:

JAVA_HOME=/usr/lpp/<Java SDK 1.4.2 installation directory>/J1.4

b. Modify the CICS_DIRECTORY variable to your CICS installation directory,

as indicated by the comments in the script. The line to be changed is:

CICS_DIRECTORY=/usr/lpp/cicsts/<CICS installation directory>

c. Modify the JNDI_PROVIDER_URL variable to the URL and port number of

your name server, as indicated by the comments in the script. The line to be

changed is:

JNDI_PROVIDER_URL=iiop://nameserver.location.company.com:2809

The above line assumes that you are using a COS name server, such as

tnameserv, the lightweight COS Naming Directory Server supplied with Java

1.3 and later, and that it is configured to listen on port 2809.

If, for example, you are using a COS name server configured to listen on

port 900, you might specify:

JNDI_PROVIDER_URL=iiop://nameserver.location.company.com:900

If you are using the tnameserv name server, configured to listen on port

2809, on a workstation named myworkstation.acme.com you should specify:

JNDI_PROVIDER_URL=iiop://myworkstation.acme.com:2809

To start the tnameserv program, type the following command at the

workstation command prompt:

tnameserv -ORBInitialPort 2809

Chapter 18. Running the EJB IVP 249

If you are using the COS Naming Directory Server supplied with WebSphere

Application Server Version 5 or later, configured to listen on port 2809, you

should specify:

JNDI_PROVIDER_URL=iiop://nameserver.location.company.com:2809/domain/legacyRoot

If you are using an LDAP name server, the protocol should be ldap rather

than iiop; the port number should be 389. For example:

JNDI_PROVIDER_URL=ldap://nameserver.location.company.com:389

d. If you are using an LDAP name server, modify the LDAP_CONTAINERDN

and LDAP_NODEROOTDN variables, as indicated by the comments in the

script.

If you are using a COS naming server, these properties are ignored.

e. If necessary, modify the INITIAL_CONTEXT_FACTORY variable as

indicated by the comments in the script. Usually, you can leave this property

to default. However, some JNDI service providers cannot be accessed using

the default initial context factory. For example, if you are using WebSphere

Application Server as your JNDI provider you should set this variable to

com.ibm.websphere.naming.WsnInitialContextFactory.

f. If you have set up your CorbaServer and installed the IVP in the way

suggested, the CORBASERVER_JNDI_PREFIX and BEAN_NAME variables

will already be set to the correct values. See the comments in the script.

Running the EJB IVP

First, check that the name server is running.

Note: To start tnameserv on the local host, enter the following command at the

UNIX System Services or Windows NT command prompt:

tnameserv -ORBInitialPort 2809

This causes tnameserv to listen for connections on TCP/IP port 2809.

Next, run the IVP client program from your UNIX System Services working directory

by typing ./runEJBIVP.

On your UNIX System Services terminal, you should see messages similar to the

following:

CICS EJB IVP: Querying the Java SDK level

java version "1.4.2"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2)

Classic VM (build 1.4.2, J2RE 1.4.2 IBM z/OS Persistent Reusable VM build

 cm142-yyyymmdd (JIT enabled: jitc))

CICS EJB IVP: Starting the EJB client program

HelloWorld client program started

Performing JNDI lookup using CosNaming

Testing the following location: samples/HelloWorld

Located home interface for HelloWorld bean

You said: Hello from CICS EJB IVP client

HelloWorld client program ended

CICS EJB IVP: Completed successfully

Note:

1. In the above messages, yyyymmdd is the date on which the SDK was

built.

2. In this example, a COS Naming Server has been used. If you use an

LDAP name server, similar messages are produced.

250 Java Applications in CICS

3. If you get a javax.naming.CommunicationException, it may be because

the MVS hostname is incorrect in your tcpip.data file. You may be able

to fix the problem by adding an entry for the MVS system to your

/etc/hosts file. For guidance, see the MVS manuals.

In your JVM stdout file, you should see the following message:

CICS EJB hello world sample called with string: Hello from CICS EJB IVP client

If you re-run the client, you will probably notice a performance improvement. This is

because the JVM should be reused.

When you have finished running the IVP, you should:

1. Discard the resource definitions that you created in mygroup.

2. If you turned off EJB role-based security before running the IVP, turn it back on.

To do this, restart CICS with the XEJB system initialization parameter set to

’YES’.

Chapter 18. Running the EJB IVP 251

252 Java Applications in CICS

Chapter 19. Running the sample EJB applications

Important

The sample EJB applications require a CICS EJB server. You must configure CICS,

as described in Chapter 17, “Setting up an EJB server,” on page 229, before

attempting to install the samples.

CICS supplies the following sample EJB applications:

The EJB Installation Verification Program (IVP)

A simple application that you can use to test your CICS EJB environment and

name server. A Web server is not required. See Chapter 18, “Running the EJB

IVP,” on page 247.

The EJB “Hello World” sample

A simple application that you can use to test your EJB environment, including

CICS, your name server, and your Web server. See “The EJB “Hello World”

sample application.”

The EJB Bank Account sample

A more complex application that demonstrates how you can use enterprise

beans to make existing, CICS-controlled, information available to Web users.

See “The EJB Bank Account sample application” on page 261.

The EJB “Hello World” sample application

“Hello World” is a simple application that you can use to test your EJB environment,

including CICS, your name server, and your Web server.

What the EJB “Hello World” sample does

The sample application requests input, appends the input to a standard message,

and displays the resulting string. The sample consists of:

v An HTML form.

v A Java servlet, plus JavaServer Pages (JSPs), running in a J2EE-compliant Web

application server.

v An enterprise bean running on a CICS EJB server.

The sample works like this:

1. The user starts the application from a Web browser. A form is displayed.

2. The form asks the user to input a phrase. When the user presses the SUBMIT

button, the servlet is invoked.

3. The servlet:

a. Looks up a reference to the enterprise bean in the JNDI namespace

b. Creates a new remote instance of the enterprise bean in CICS

c. Invokes a method on the bean-instance, passing as input the phrase input

by the user

4. The enterprise bean appends the user’s phrase to the string “You said ” and

returns the result to the servlet.

5. The servlet uses a JavaServer Page to display the result on the user’s browser.

Figure 23 on page 254 shows the components of the sample application.

© Copyright IBM Corp. 1999, 2006 253

Prerequisites for the EJB “Hello World” sample

To run the EJB “Hello World” sample, you need:

v A CICS EJB server. The way to set one up is described in Chapter 17, “Setting

up an EJB server,” on page 229.

v A Web application server that supports J2EE Version 1.2.1 or later. If you are

using WebSphere Application Server, note that the sample requires WebSphere

Application Server Version 4 or later.

v A name server that supports the Java Naming and Directory Interface (JNDI)

Version 1.2 or later. The way to set one up is described in “Actions required on

z/OS or Windows NT” on page 230.

Supplied components of the EJB “Hello World” sample

Table 10 lists the files supplied with the EJB “Hello World” sample.

 Table 10. Supplied components of the EJB “Hello World” sample

Filename Type Default location Comments

CICSHelloWorld.ear EAR file HFS samples

directory: see Note.

The Web components of the sample

application—Java servlet classes and source

files; HTML and JSPs.

DFH$EJB Resource

definition group

CSD Contains the CICS resource definitions required

by the sample application.

Web
browser

Workstation

Enterprise bean

CICS

z/OS

Web
server

NT server

J2EE Web
application server

Java
servlet

JNDI

COS
Naming
Server

JSP

Figure 23. Overview of the EJB “Hello World” sample application. The main elements of the sample are a Java servlet

and an enterprise bean. In this example, the servlet is running in a Web application server on a Windows NT server; a

COS Naming Server is used. Other configurations are possible. For example, an LDAP name server could have been

used; or the COS Naming Server might not have been hosted in the same application server as the servlet.

254 Java Applications in CICS

|

Table 10. Supplied components of the EJB “Hello World” sample (continued)

Filename Type Default location Comments

HelloWorldCLI.jar JAR file HFS samples

directory: see Note.

Client EJB stubs required by the servlet.

HelloWorldEJB.jar Deployed JAR

file

HFS samples

directory: see Note.

Java classes, source files, deployment

descriptor, plus supporting classes for the CICS

enterprise bean. Doesn’t need to be unpacked

unless you want to modify the source code.

readme.txt Text file HFS samples

directory: see Note.

Contains:

1. Step-by-step instructions for installing the

Web components of the EJB “Hello World”

sample on WebSphere Application Server.

2. Hints, tips, and debugging information.

Note: The default HFS samples directory is

/usr/lpp/cicsts/cicsts31/samples/ejb/helloworld

where cicsts31 is the value of the CICS_DIRECTORY variable used by the DFHIJVMJ job during CICS installation.

Installing the EJB “Hello World” sample

Installing the EJB “Hello World” sample requires actions on:

1. HFS. If you’ve previously run the EJB IVP, you will have performed this action

already.

2. CICS. If you’ve previously run the EJB IVP, you will have performed these

actions already.

3. The Web application server.

HFS setup

If necessary, on HFS copy the HelloWorldEJB.jar deployed JAR file from the EJB

samples directory to your CorbaServer’s deployed JAR file (“pickup”) directory.

Note:

1. You need to do this only if you haven’t already installed the

HelloWorldEJB.jar deployed JAR file while running the EJB IVP.

2. The deployed JAR file directory is the directory that you created in

“Before running the EJB IVP” on page 229 and specified on the

DJARDIR option of the CORBASERVER definition.

3. The samples directory is: /usr/lpp/cicsts/cicsts31/samples/ejb/
helloworld, where cicsts31 is the value of the CICS_DIRECTORY

variable used by the DFHIJVMJ job during CICS installation.

4. Remember that HFS names are case-sensitive.

5. The HelloWorldEJB.jar file contains both the source and executable

code for the enterprise bean.

CICS setup

1. If EJB role-based security is active in your CICS region, you must turn it off

before running the EJB “Hello World” sample. That is, if both the SEC and XEJB

system initialization parameters currently specify ’YES’, you must set XEJB to

’NO’ and restart CICS.

2. The CICS-supplied sample group, DFH$EJB, contains TCPIPSERVICE and

CORBASERVER definitions suitable for running the EJB “HelloWorld” sample.

You must change some of the attributes of these resource definitions to suit

Chapter 19. Running the sample EJB applications 255

your own environment, and install the changed definitions into CICS. You should

already have done this, as part of the task of setting up your EJB server. If you

haven’t, follow the step-by-step instructions in “Actions required on CICS” on

page 231.

Note: Group DFH$EJB does not contain a REQUESTMODEL definition,

because it’s not necessary to install one. The sample uses the default

transaction ID, CIRP.

a. If necessary, issue a CEMT PERFORM CORBASERVER(EJB1) SCAN command. (You

need to do this only if you haven’t already installed the HelloWorldEJB.jar

deployed JAR file while running the EJB IVP.) CICS:

1) Scans the pickup directory

2) Copies the HelloWorldEJB.jar deployed JAR file that it finds in the

pickup directory to its shelf directory

3) Dynamically creates and installs a DJAR definition for

HelloWorldEJB.jar

4) Because the CORBASERVER definition specifies AUTOPUBLISH(YES),

publishes the enterprise bean contained in HelloWorldEJB.jar to the

JNDI namespace.

3. If you have not already done so, set the status of the TCPIPSERVICE to OPEN:

CEMT SET TCPIPSERVICE(EJBTCP1) OPEN

If you issued the CEMT PERFORM CORBASERVER(EJB1) SCAN command, on the

CICS Console you should see, among others, messages similar to the following:

DFHEJ5024 Scan commencing for CorbaServer EJB1, directory being scanned is

 DJARDIR_name.

DFHEJ5030 New DJar HelloWorldEJB is being created during a scan against

 CorbaServer EJB1.

DFHEJ0901 DJar HelloWorldEJB within CorbaServer EJB1 has been created.

DFHEJ5025 Scan completed for CorbaServer EJB1, 1 DJars created, 0 DJars updated.

DFHEJ5032 DJar HelloWorldEJB is having its contents automatically published to

 the namespace.

DFHEJ5009 Published bean HelloWorld to JNDI server

 iiop://nameserver.location.company.com:900 at location samples.

DFHEJ1540 DJar HelloWorldEJB and the Beans it contains are now accessible.

where:

v DJARDIR_name is the name of your CorbaServer’s deployed JAR file

(“pickup”) directory.

v iiop://nameserver.location.company.com:900 is the URL and port number

of your name server. In this example, a COS Naming Server is used.

Web application server setup

On the Web application server, you must install the Web components of the EJB

“Hello World” sample application. From the HFS EJB samples directory, you need:

v CICSHelloWorld.ear. A J2EE enterprise archive (EAR) file, containing the Web

components of the sample and the source code of the servlet and JSPs.

v readme.txt. A text file, containing:

1. Step-by-step instructions for installing the Web components of the sample on

WebSphere Application Server.

2. Hints, tips, and debugging information.

Note: The default samples directory is

/usr/lpp/cicsts/cicsts31/samples/ejb/helloworld

256 Java Applications in CICS

where cicsts31 is the value of the CICS_DIRECTORY variable used by the

DFHIJVMJ job during CICS installation.

Important: The rest of this section contains generic instructions for installing the

Web components of the sample on a J2EE-compliant Web application

server (which may or may not be WebSphere). It is suitable for

experienced users. If your Web application server is WebSphere

Application Server Version 4 or later and you are a novice user of that

product, we recommend that you follow instead the detailed,

WebSphere-specific instructions in the readme.txt file.

1. Install the Web components of the EJB “Hello World” sample (contained in

CICSHelloWorld.ear) in your J2EE Web application server, following the

vendor’s guidelines for installing applications. In WebSphere Application Sever,

for example, this involves using the administration console to:

a. Install a new application

b. Generate the updated Web server plugin

c. Save the configuration

Note: CICSHelloWorld.ear includes a default configuration for the EJB “Hello

World” sample. To run the sample, it is not necessary to edit or add any

configuration information.

2. Start the application using your Web application server’s standard procedure.

Testing the EJB “Hello World” sample

To test the application:

1. Ensure that all the following are running:

v The Web server

v The Web application server and the sample application

v The name server

v The CICS region

2. Start a Web browser and point it at the URL of your Web server, followed by

“cicshello”. For example:

http://myServer.ibm.com/cicshello

The opening screen shown in Figure 24 on page 258 appears.

Chapter 19. Running the sample EJB applications 257

|

3. Enter a phrase in the Hello String: field.

4. Check that the Provider URL:, CORBASERVER JNDI prefix:, Bean Name:,

Container Distinguished Name:, Node Root Relative Distinguished Name:,

and JNDI Initial Context Factory: fields contain values that are valid for your

installation. If they do not, overtype them as follows:

Provider URL:

Enter the URL and port number of the name server where the enterprise

Figure 24. Opening screen of the EJB “Hello World” sample application

258 Java Applications in CICS

bean is published. (These are specified by the

com.ibm.cics.ejs.nameserver property in your JVM properties file.) For

example:

v If you are using an LDAP name server with a URL of myldapns.ibm.com

and a port number of 389, specify “ldap://myldapns.ibm.com:389”.

v If you are using a standard COS Naming Server with a URL of

mycosns.ibm.com and a port number of 900, specify “iiop://
mycosns.ibm.com:900”.

v If you are using the COS Naming Directory Server supplied with

WebSphere Application Server Version 5 or later, with a URL of

mycosns.ibm.com and a port number of 2809, specify:

com.ibm.cics.ejs.nameserver=iiop://mycosns.ibm.com:2809/domain/legacyRoot

For detailed information about how to specify the location of the name

server, see the description of the com.ibm.cics.ejs.nameserver property in

the CICS System Definition Guide.

CORBASERVER JNDI prefix:

Enter the JNDI prefix of your CorbaServer. If you are using the

CORBASERVER definition supplied in DFH$EJB, you do not need to

change the default value of “samples”.

Bean name:

Enter the name of the enterprise bean used by the sample, as defined in

the deployment descriptor in the supplied HelloWorldEJB.jar file. Unless

you have renamed the bean, you do not need to change the default value of

“HelloWorld”.

Container Distinguished Name:

If you are using an LDAP name server, enter the distinguished name of the

LDAP system namespace root, as supplied by your LDAP administrator.

(The distinguished name of the LDAP system namespace root is specified

by the com.ibm.ws.naming.ldap.containerdn property in your JVM

properties file.) If you are using a COS Naming Server, the value of this field

is ignored.

Node Root Relative Distinguished Name:

If you are using an LDAP name server, enter the distinguished name of the

LDAP node root, as supplied by your LDAP administrator. (The

distinguished name of the LDAP node root is specified by the

com.ibm.ws.naming.ldap.noderootrdn property in your JVM properties file.)

If you are using a COS Naming Server, the value of this field is ignored.

JNDI Initial Context Factory:

Select the appropriate JNDI initial context factory from the drop-down list. If

your Web application server is WebSphere, the factory to use depends on:

v The version of WebSphere you’re using

v The location of WebSphere—that is, whether it’s on a distributed platform

such as Windows NT or a host platform such as z/OS or OS/390

v The type of name server you’re using—COS naming or LDAP

Table 11 on page 260 shows the correct initial context factory to specify, if

your Web application server is WebSphere.

Chapter 19. Running the sample EJB applications 259

Table 11. Setting the initial context factory, according to the version and location of WebSphere and the type of name

server

WebSphere

Version

Location of Web

application

server

Name server

type

Initial context factory to use

3.5 Distributed COS com.ibm.ejs.ns.jndi.CNInitialContextFactory

3.5 Distributed LDAP com.ibm.jndi.LDAPCtxFactory

3.5 z/OS or OS/390 COS com.sun.jndi.cosnaming.CNCtxFactory

3.5 z/OS or OS/390 LDAP com.sun.jndi.ldap.LdapCtxFactory

4 or later Distributed COS or

LDAP

com.ibm.websphere.naming.WsnInitialContextFactory

4 or later z/OS or OS/390 COS com.sun.jndi.cosnaming.CNCtxFactory

4 or later z/OS or OS/390 LDAP com.sun.jndi.ldap.LdapCtxFactory

If your Web application server is not WebSphere, choose the appropriate

value from the drop-down list.

Note: The drop-down list contains several initial context factory classes,

plus a “default” list item. The sample application assigns the value of

the default list item as follows:

a. If the com.ibm.websphere.naming.WsnInitialContextFactory

class is found in the Java classpath, the sample makes it the

default item. This class is a “wrapper” class that wraps both

com.ibm.ejs.ns.jndi.CNInitialContextFactory and

com.ibm.jndi.LDAPCtxFactory. The sample determines the

correct base class to use by examining the type of name server

that you’ve specified in the Provider URL field: if the specified

protocol is “iiop”, the sample uses

com.ibm.ejs.ns.jndi.CNInitialContextFactory; if it’s “ldap”, the

sample uses com.ibm.jndi.LDAPCtxFactory.

b. If the com.ibm.websphere.naming.WsnInitialContextFactory

class is not found in the Java classpath, the sample determines

the correct class to use by examining the type of name server

that you’ve specified in the Provider URL field: if the specified

protocol is “iiop”, the sample uses

com.ibm.ejs.ns.jndi.CNInitialContextFactory; if it’s “ldap”, the

sample uses com.ibm.jndi.LDAPCtxFactory.

 If none of the values in the drop-down list are valid for your installation,

select the Other radio button and enter the correct value in the lower text

field.

5. Press the SUBMIT button. This invokes the servlet and runs the application.

If the application is configured correctly and the input values are valid, the

HelloWorldResults JSP displays the message “You said your phrase” in the

browser (where your phrase is the phrase you entered in step 3).

If the application is not configured correctly, or one or more of the input values

is invalid, the HelloWorldError JSP displays an error message in the browser.

The readme.txt file contains hints and tips that may help you debug a failed

application.

260 Java Applications in CICS

The EJB Bank Account sample application

The EJB Bank Account sample demonstrates how you can use enterprise beans

and DB2 to make existing, CICS-controlled, information available to Web users.

What the EJB Bank Account sample does

The sample application extracts customer information from data tables and returns

it to the user. The sample consists of:

v An HTML form.

v A Java servlet, plus JavaServer Pages, running in a J2EE-compliant Web

application server.

v An enterprise bean running on a CICS EJB server.

v Two DB2 data tables containing customer information. One contains account

information such as current balance; the other contains name and address

details.

v Two CICS server programs, written in COBOL. The DFH0ACTD program

retrieves information from the accounts data table. The DFH0CSTD program

retrieves information from the name and address data table.

The sample works like this:

1. The user starts the application from a Web browser. A form is displayed.

2. The form requests a customer number from the user. When the user has

entered a customer number and pressed the SUBMIT button, the servlet is

invoked.

3. The servlet:

a. Looks up a reference to the enterprise bean in the JNDI namespace

b. Creates a new remote instance of the enterprise bean in CICS

c. Invokes a method on the bean-instance, passing as input the customer

number input by the user

4. The enterprise bean uses the Common Connector Interface (CCI) of the CCI

Connector for CICS TS to link to the CICS COBOL server programs, passing

the customer number.

The CCI Connector for CICS TS is described in Chapter 23, “The CCI

Connector for CICS TS,” on page 307.

5. The server programs use the specified number as the key to the DB2 records

for this customer. They retrieve the customer’s details from the DB2 data tables

and return the account number, balance, and address to the enterprise bean.

6. The enterprise bean returns the customer’s details to the servlet, which uses a

JavaServer Page to display them on the user’s browser. If the customer number

is not valid, the browser displays an error page.

Design note: An alternative design would be to replace the connector code with a

JCICS LINK call. The advantage of using a CCI-compliant connector

such as the CCI Connector for CICS TS is that it makes it easier to

port the application between application servers such as WebSphere

and CICS. If portability is not required, a JCICS call would be

sufficient.

Figure 25 on page 262 shows the components of the sample application.

Chapter 19. Running the sample EJB applications 261

Prerequisites for the EJB Bank Account sample

To run the EJB Bank Account sample, you need:

v A CICS EJB server. The way to set one up is described in Chapter 17, “Setting

up an EJB server,” on page 229.

v DB2 Version 5 or later.

v A Web application server that supports J2EE Version 1.2.1 or later. If you are

using WebSphere Application Server, note that the sample requires WebSphere

Application Server Version 4 or later.

v A name server that supports JNDI Version 1.2 or later. The way to set one up is

described in “Actions required on z/OS or Windows NT” on page 230.

Enterprise bean

CICS COBOL
programs

CCI connector
for CICSTS

CICS

z/OS

Web
server

Java
servlet

JSP

J2EE Web
application server

NT server

Web
browser

Workstation

DB2

LDAP server

JNDI

Figure 25. Overview of the EJB Bank Account sample application. The main elements of the sample are a Java

servlet, an enterprise bean, two CICS server programs, and two DB2 data tables. The sample extracts customer

details from the data tables and returns them to the user. In this example, the servlet is running in a Web application

server on a Windows NT server; an LDAP name server is used. Other configurations are possible. For example, a

COS Naming Server could have been used.

262 Java Applications in CICS

|

Supplied components of the EJB Bank Account sample

Table 12 lists the files supplied with the EJB Bank Account sample.

 Table 12. Supplied components of the EJB Bank Account sample

Filename Type Default

location

Comments

DFH$EDB2 Text deck SDFHSAMP DB2 data definition language (DDL)

statements to define the DB2 data

tables used by the sample and to

populate them with data.

DFH$ESQL Text deck SDFHSAMP DB2 data manipulation language (DML)

statements to bind the DB2 data tables

to the COBOL server programs.

DFH$EJB2 Resource

definition

group

CSD Contains the CICS resource definitions

required by the sample application.

DFH0ACTD COBOL

source

code

SDFHSAMP Source code of the DFH0ACTD server

program.

DFH0CSTD COBOL

source

code

SDFHSAMP Source code of the DFH0CSTD server

program.

DFHEBURM Sample

user

replaceable

program

SDFHSAMP Changes the user ID under which the

sample runs.

CicsSample.ear EAR file HFS samples

directory: see

Note.

The Web components of the sample

application—Java servlet classes and

source files; HTML and JSPs.

readme.txt Text file HFS samples

directory: see

Note.

Contains:

1. Step-by-step instructions for

installing the Web components of

the EJB sample on WebSphere

Application Server.

2. Hints, tips, and debugging

information.

SampleCLI.jar JAR file HFS samples

directory: see

Note.

Client EJB stubs required by the

servlet.

SampleEJB.jar Deployed

JAR file

HFS samples

directory: see

Note.

Java classes, source files, deployment

descriptor, plus supporting classes for

the CICS enterprise bean. Doesn’t

need to be unpacked unless you want

to modify the source code.

Note: The default HFS samples directory is

/usr/lpp/cicsts/cicsts31/samples/ejb/bankaccount

where cicsts31 is the value of the CICS_DIRECTORY variable used by the DFHIJVMJ job

during CICS installation.

Chapter 19. Running the sample EJB applications 263

Security of the EJB Bank Account sample

We recommend that you run the Bank Account sample in a secure environment.

However, in order to simplify the installation process, you may choose not to do so

at first. If you don’t want to activate the secure environment immediately, set the

XEJB system initialization parameter to ’NO’ and skip the rest of this section. To

activate the secure environment at a later date, follow the instructions in the rest of

this section.

You can implement security for the sample in a number of ways. For example, you

can use any of the following alternatives:

v Allow all users to run the sample under the default user ID.

v Allow all users to run the sample under a user ID specified by the security exit

program for IIOP.

v Use an SSL server-side certificate to encrypt the data sent between the Web-tier

and CICS, allowing all users to run the sample over a secure transport, under the

default user ID.

v Use an SSL server-side certificate to encrypt the data sent between the Web-tier

and CICS, allowing all users to run the sample over a secure transport, under a

user ID specified by the security exit program for IIOP.

v Use SSL client certification to automatically authenticate the Web-tier application

server to CICS, allowing all users to run the sample over a secure transport,

under a user ID assigned to the Web-tier application server.

v Use the IBM Asserted Identity protocol to allow Web-tier client applications

running in WebSphere Application Server for z/OS to propagate their existing

userids to CICS over a secure transport.

Note:

1. By default, the Bank Account application does not require the user to be

authenticated at the Web-tier. You can choose to activate authentication

in the Web container by following your application server’s instructions. If

you do authenticate in the Web tier, the security principle is not

propagated to CICS, so in terms of CICS security it has no effect.

However, early authentication in the Web-tier could be used to create a

“protection domain” under which CICS trusts the Web-tier not to allow

unauthenticated users to invoke business methods on CICS enterprise

beans.

2. In order to use SSL encryption or authentication, you require a

J2EE-compliant Web application server that fully supports SSL. Consult

your vendor’s documentation for further details.

3. For more information about SSL authentication, see the CICS RACF

Security Guide.

Whichever authentication method you choose, you need (among other things) to:

1. Provide authorisation information in the deployment descriptor of the enterprise

bean in CICS. This authorisation information consists of:

A “security role” element

Identifies a class of user who is allowed to perform a given action or use a

given resource.

A “method permission” element

Identifies specific methods of the enterprise bean that members of the

specified security role are authorised to use.

264 Java Applications in CICS

2. Update your CICS external security manager (ESM) to map the specified

security role to a number of real user IDs. The following step-by-step

instructions for implementing security assume that your ESM of choice is RACF.

If you use a different ESM, please consult your ESM vendor for guidance.

Implementing role-based security for the Bank Account sample

You can implement role-based security for the Bank Account sample using the

Assembly Toolkit (ATK, which is a component of the Application Server Toolkit,

ASTK). This tool is shipped as part of WebSphere Application Server Version 5.1

and later. You can use the graphical user interface of ATK to (among other things)

edit the contents of an enterprise bean’s deployment descriptor.

Before you start, ensure that you have ATK installed on your workstation. Once

installed, the tool can be launched from an icon which is added to your Start menu

in Windows.

ATK is used for the first stage of implementing role-based security, which involves

editing the deployment descriptor for the enterprise bean. When you have

completed that stage, follow the instructions for the second stage of implementing

role-based security, which involves configuring other software.

Stage 1. Using ATK to edit the deployment descriptor:

1. Copy the SampleEJB.jar file from the HFS samples directory to your

workstation. You can do this using FTP in binary mode, or any other method of

your choice. The HFS samples directory is /usr/lpp/cicsts/<cics_name>/
samples/ejb/bankaccount. For ATK, you also need to perform the same process

for the dfjcci.jar file, which is in the /usr/lpp/cicsts/<cics_name>/lib

directory. You do not need to edit that JAR file, but ATK needs it to rebuild the

JAR file for the EJB bank account sample correctly after editing.

2. Import the JAR file into ATK as an EJB project.

a. Start ATK, and go to the J2EE perspective by selecting Window > Open

Perspective > J2EE.

b. Select the Import option from the File menu. Select EJB JAR file as the

import source. Select Browse and find the SampleEJB.jar file. Enter a

suitable name for the project. Select Next and choose to import all

enterprise beans, which is the default. Select Finish to create the EJB

project.

c. When the project is created, you should see some errors appear in the

Tasks list. To correct these errors, you need to add the dfjcci.jar file to the

build path for the EJB project. In the left-hand navigation pane (using the

J2EE hierarchy view), expand the EJB Modules item to see your EJB

project. Right-click on the project name and select Properties. Select Java

Build Path. Go to the Libraries tab and select the Add External JARs

button. Navigate to the dfjcci.jar file and select Open. Select OK. ATK

rebuilds the EJB project and the errors should disappear.

At this point, in order to familiarise yourself with ATK, you can browse through

the contents of the JAR file. For more information about the EJB deployment

descriptor, see “Enterprise beans—the deployment descriptor” on page 206.

3. Add security roles to the deployment descriptor. In ATK, in the left-hand

navigation pane (using the J2EE hierarchy view), expand the EJB Modules item

to see your EJB project. Double-click on the project name to open the project.

Select the Assembly Descriptor tab at the bottom of the pane. Under Security

Roles, select the Add button to add a new security role.

Chapter 19. Running the sample EJB applications 265

|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

If your organisation has already set up security roles for use with other

applications, you may want to reuse an existing role. If so, supply the name of

the role that you want to use in the field provided. If you don’t have an existing

security role that you want to reuse, enter a new role name, such as “All_users”.

You can also provide an optional description of the role to act as a memory aid

in the future. Select Finish to return to the main window.

Note: If you reuse an existing security role which is already defined to your

ESM, you must remove the Display Name element from the JAR file’s

deployment descriptor. This element is used by CICS to provide an

application name which is prefixed to all security role names when

performing a security check at runtime, thus providing support for

security roles scoped at the application level rather than enterprise-wide.

In ATK, you can remove this element by selecting the Overview tab at

the bottom of the pane. Select the text in the Display Name field and

delete it.

4. Now define a method permission and associate it with a security role. In ATK,

select the Assembly Descriptor tab again. Under Method Permissions, select

the Add button. The wizard presents a list of the security roles that you have

defined. For the Bank Account sample, it’s appropriate to run all the methods

under the same security role. Select the security role that you want to associate

with the method permission, and select Next. Select the CICSSample bean, and

select Next. Check the box for CICSSample to select all the method elements

for the bean. Select Finish. You are returned to the previous screen.

5. Save the updated deployment descriptor by selecting the Save option from the

File menu.

6. Export the project from ATK back into a JAR file on your workstation. To do this,

select the Export option from the File menu. Select EJB JAR file as the export

destination, and select Next. Select your EJB project from the drop-down list.

Select Browse and locate the SampleEJB.jar file to be used as the destination.

(This overwrites your original version of the file. You might want to keep a

backup of the original version of the file on your workstation under a different

name.) Select the checkbox for Export source files to keep the source files

with the JAR file. Select Finish. Exit ATK.

7. Copy the updated SampleEJB.jar file back to HFS. You can use either FTP in

binary mode or your preferred file transfer process. Save the SampleEJB.jar file

to the pickup directory of your CorbaServer.

Stage 2. Configuring other security settings:

1. Ensure that both the SEC and the XEJB CICS system initialization parameters

specify ’YES’. (If either specifies ’NO’, EJB role-based security is turned off.)

2. If you reused an existing security role that had already been set up in your

installation, you can skip this step, which is to update RACF to associate the

EJB security role with a set of CICS user IDs.

Note: If your ESM is not RACF, you must seek advice from your ESM vendor

as to how to perform this step.

The CICS user ID (or IDs) that you choose to associate with the security role

defined in the enterprise bean’s deployment descriptor should be chosen

according to which security implementation you opted for at the start of this

section. For example:

v If you want to allow all anonymous users to run the sample (whether using

SSL or not), you should associate the CICSUSER default user ID with the

security role.

266 Java Applications in CICS

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

v If you want to run the sample under a user ID (or IDs) selected by the

security exit program for IIOP (whether using SSL or not), you should

associate that user ID (or IDs) with the security role.

v If you want to use full SSL client certification, you should associate the user

ID of the Web-tier application server’s certificate with the security role.

To set up the necessary EJB security role-to-CICS user ID mapping:

a. Run the RACF EJBROLE generator utility against the updated

SampleEJB.jar file. (The RACF EJBROLE generator utility is a Java program

that extracts security role information from deployment descriptors, and

generates a REXX program which defines security roles to RACF. For

information on how to use the generator utility, see “Using the RACF

EJBROLE generator utility” on page 347.)

b. Ask your RACF administrator to run the REXX program generated by the

RACF EJBROLE generator utility.

3. If you don’t want to use the the security exit program for IIOP to alter the user

ID that the sample runs under (from the default CICS user ID to another ID of

your choice), you can skip this step.

CICS supplies a sample security exit program, DFHEBURM, that alters the user

ID under which the Bank Account sample runs from the default CICS user ID to

“SAMPLE”. You can use this version of the user-replaceable program, or alter it

to suit your needs. If you already have a customized security exit program for

IIOP, you can update your version to perform a similar function.

You must specify the name of your security exit program on the URM option of

the TCPIPSERVICE definition under which the sample is to be run.

For guidance information about the security exit program for IIOP, see“Using the

IIOP user-replaceable security program” on page 191.

For information about writing a security exit program for IIOP, see the CICS

Customization Guide. Also, study the source of the supplied sample program,

which contains comments and tips.

For information about compiling and installing user-replaceable programs, see

the CICS Customization Guide.

For information about coding TCPIPSERVICE definitions, see the CICS

Resource Definition Guide.

4. If you are using SSL encryption or authentication, you must:

v Configure your J2EE-compliant Web application server to use SSL. Refer to

your Web server’s documentation for guidance.

v Have a server certificate available for use.

v Alter the definitions of the CORBASERVER and TCPIPSERVICE resources

under which the sample is to be run. That is:

– If you are using SSL client-side authentication, the CLIENTCERT option of

the CORBASERVER definition must specify the name of a

TCPIPSERVICE that defines the port to be used for inbound IIOP

requests with SSL client certification. Also, the Web application server’s

SSL certificate must be:

- Included in the list of certificates trusted by CICS, in RACF

- Mapped to a RACF userid

– If you are using SSL server-side authentication, the SSLUNAUTH option

of the CORBASERVER definition must specify the name of a

TCPIPSERVICE that defines the port to be used for inbound IIOP

requests with SSL but no client certification.

Chapter 19. Running the sample EJB applications 267

For information about coding CORBASERVER resource definitions and

TCPIPSERVICE resource definitions, see the CICS Resource Definition

Guide.

v If you are using the IBM Asserted Identity protocol for encryption,

authentication, and identity propagation, you must:

– Configure WebSphere Application Server for z/OS to authenticate users.

– Enable SSL client certification in WebSphere.

– Have a server SSL certificate available for use in CICS.

– Include the server certificate associated with WebSphere Application

Server in the RACF’s list of certificates trusted by CICS. Additionally, the

userid associated with the RACF certificate must be granted permission to

assert the identity of other users.

– Alter the definitions of the CORBASERVER and TCPIPSERVICE

resources under which the sample is to run. The ASSERTED option of the

CORBASERVER definition must specify the name of a TCPIPSERVICE

that defines the port to be used for inbound IIOP requests with asserted

identity security.

Installing the EJB Bank Account sample

Installing the EJB Bank Account sample requires actions on:

1. z/OS (DB2 and CICS)

2. The Web application server

z/OS setup

On z/OS, you must:

 1. Compile and link-edit the CICS COBOL DB2 server programs, using your

organization’s normal procedures. The DFH0ACTD and DFH0CSTD members

of the SDFHSAMP library contain the source code of the server programs.

Store the load modules in an application load library that is included in the

CICS DD DFHRPL concatenation. (For information about storing load modules

in application load libraries, see the CICS System Definition Guide.)

 2. Define the DB2 data tables used by the sample, and populate the tables with

data. The DFH$EDB2 text deck contains the necessary DB2 DDL statements

and the supplied data.

Before using DFH$EDB2, you must modify the following line to suit your

system:

CREATE STOGROUP EBSAMPSG VOLUMES(SYSDA,SYSDB) VCAT DSNxxxxx;

Change DSNxxxxx to the name of your high-level integrated catalog facility

(ICF) catalog identifier for user-defined VSAM data sets.

Authority required: DB2 authority to create a database, storage group,

tablespace, tables, and indices.

 3. Bind the DB2 tables to the COBOL server programs. The DFH$ESQL text

deck contains the necessary DB2 DML statements.

Authority required: DB2 authority to perform a BIND for this database.

Note:

a. This step statically binds the SQL statements in the server programs

to DB2, so that they don’t have to be dynamically bound at

execution time, thus improving runtime performance.

268 Java Applications in CICS

b. If you recompile one of the server programs subsequently and

intend it to access DB2, each time you recompile you must:

1) Re-bind the DB2 tables to the COBOL server programs.

2) Refresh the copy of the server program on CICS by executing

the following CICS command in the CICS region:

CEMT SET PROG(program_name) NEW

For example, if you change the DFH0CSTD program and

recompile it, use CEMT SET PROG(DFH0CSTD) NEW. (DFH0CSTD is

defined to the CICS region in the DFH$EJB2 resource definition

group—see step 5.)

 4. Grant authority to the CICS user ID to access the DB2 plan, using your

organization’s normal procedures (for example, SPUFI). For information about

granting authority to access a DB2 plan, see the CICS DB2 Guide.

 5. Define the programs and DB2 connections used by the sample to CICS. The

CICS-supplied sample group, DFH$EJB2, contains resource definitions for the

EJB “Bank Account” sample. You must change some of the attributes of these

resource definitions to suit your own environment. To do this, use the CEDA

transaction or the DFHCSDUP utility.

a. Copy the sample group to a group of your own choosing. For example:

 CEDA COPY GROUP(DFH$EJB2) TO(mygroup)

b. Display group mygroup and change the attributes of the following definitions

as shown:

v On the DB2CONN definition, change the value of DB2ID to the ID of the

DB2 subsystem on which you created the DB2 tables used by the

sample.

v The PROGRAM definitions do not need to be modified.

c. Discard the definitions that you don’t need from group mygroup.

As well as DB2CONN and PROGRAM definitions, DFH$EJB2 also

contains a CORBASERVER and a TCPIPSERVICE definition. However,

these are for reference only. It is strongly recommended that you set up

your EJB server, as described in Chapter 17, “Setting up an EJB server,”

on page 229, before attempting to install the sample programs. If you do

this, you don’t need the CORBASERVER and TCPIPSERVICE definitions

in DFH$EJB2 because you will already have created your own based on

those supplied in resource group DFH$EJB. Discard them from group

mygroup.

If you do decide to use the CORBASERVER and TCPIPSERVICE

definitions in DFH$EJB2, you must modify them as described in “Actions

required on CICS” on page 231.

If your CICS region uses program autoinstall, you don’t need the

PROGRAM definitions. Discard them from group mygroup.

Note: There is no supplied REQUESTMODEL definition, because it’s not

necessary to install one. The sample uses the default transaction ID,

CIRP.

d. Add the resource group containing the modified resource definitions to the

CICS CSD, and to the CICS startup group list. To do this, it is

recommended that you use the CICS system definition utility program,

DFHCSDUP. For information about using DFHCSDUP, see the CICS

Operations and Utilities Guide.

Authority required: RACF authority to install resource definitions into the

CICS region.

Chapter 19. Running the sample EJB applications 269

6. If you have not already done so while setting up security, put the supplied

SampleEJB.jar deployed JAR file into your CorbaServer’s “pickup” directory.

 7. Ensure that the name server has been started. If CICS has not been started,

start it now.

 8. Issue the following command at the CICS region console:

CEMT PERFORM CORBASERVER(corbaserver_name) SCAN

CICS scans the pickup directory, copies the SampleEJB.jar deployed JAR file

to its shelf directory, and creates and installs a DJAR definition for it.

Note: If you had to start CICS in step 7, this step is not necessary, because

CICS will have scanned the pickup directory on startup.

Authority required: RACF authority to create a DJAR and update access to

the CORBASERVER.

 9. Publish the enterprise bean to the JNDI namespace. If your CORBASERVER

definition specifies AUTOPUBLISH(YES), this will have happened automatically

when the SampleEJB.jar deployed JAR file was installed. If your

CORBASERVER definition specifies AUTOPUBLISH(NO), issue the following

command at the CICS region console:

CEMT PERFORM DJAR(SampleEJB) PUBLISH

Authority required: RACF authority to update a DJAR.

10. Use the CICSConnectionFactoryPublish sample program to create a

ConnectionFactory object for use by the CCI Connector for CICS TS, and to

publish it to the name server. For instructions on how to use the

CICSConnectionFactoryPublish program, see “Using the sample utility

programs to manage and acquire a connection factory” on page 316.

11. Ensure that the DB2 connection status is CONNECTED by issuing the

following command at the CICS system console:

CEMT SET DB2CONN CONNECTED

Web application server setup

On the Web application server, you must install the Web components of the EJB

Bank Account sample application. From the HFS EJB samples directory, you need:

v CicsSample.ear. A J2EE enterprise archive (EAR) file containing the Web

components of the sample.

v readme.txt. A text file containing:

1. Step-by-step instructions for installing the Web components of the sample on

WebSphere Application Server.

2. Hints, tips, and debugging information.

Note: The default samples directory is

/usr/lpp/cicsts/cicsts31/samples/ejb/bankaccount

where cicsts31 is the value of the CICS_DIRECTORY variable used by the

DFHIJVMJ job during CICS installation.

Important: The rest of this section contains generic instructions for installing the

Web components of the sample on a J2EE-compliant Web application

server (which may or may not be WebSphere). It is suitable for

experienced users. If your Web application server is WebSphere

Application Server Version 4 or later and you are a novice user of that

product, we recommend that you follow instead the detailed,

WebSphere-specific instructions in the readme.txt file.

270 Java Applications in CICS

|

1. Install the Web components of the EJB Bank Account sample (contained in

CicsSample.ear) in your J2EE Web application server, following the vendor’s

guidelines for installing applications. In WebSphere Application Sever, for

example, this involves using the administration console to:

a. Install a new application

b. Generate the updated Web server plugin

c. Save the configuration

Note: CicsSample.ear includes a default configuration for the EJB Bank

Account sample. To run the sample, it is not necessary to edit or add any

configuration information.

2. Start the application using your Web application server’s standard procedure.

Testing the EJB Bank Account sample

To test the application:

1. Ensure that all the following are running:

v The Web server

v The Web application server and the sample application

v The name server

v The CICS region

v The DB2 subsystem

2. Start a Web browser and point it at the URL of your Web server, followed by

“cicssample”. For example:

http://myServer.ibm.com/cicssample

The opening screen shown in Figure 26 on page 272 appears.

Chapter 19. Running the sample EJB applications 271

3. Enter a customer number. (Using the supplied DB2 data, valid customer

numbers are 1 through 5).

4. Check that the Provider URL:, CORBASERVER JNDI prefix:, Bean Name:,

Container Distinguished Name:, Node Root Relative Distinguished Name:,

and JNDI Initial Context Factoryfields contain values that are valid for your

installation. If they do not, overtype them as follows:

Provider URL:

Enter the URL and port number of the name server where the enterprise

Figure 26. Opening screen of the EJB Bank Account sample application

272 Java Applications in CICS

bean is published. (These are specified by the

com.ibm.cics.ejs.nameserver property in your JVM properties file.) For

example:

v If you are using a COS Naming Server with a URL of mycosns.ibm.com

and a port number of 900, specify “iiop://mycosns.ibm.com:900”.

v If you are using an LDAP name server with a URL of myldapns.ibm.com

and a port number of 389, specify “ldap://myldapns.ibm.com:389”.

v If you are using the COS Naming Directory Server supplied with

WebSphere Application Server Version 5 or later, with a URL of

mycosns.ibm.com and a port number of 2809, specify:

com.ibm.cics.ejs.nameserver=iiop://mycosns.ibm.com:2809/domain/legacyRoot

For detailed information about how to specify the location of the name

server, see the description of the com.ibm.cics.ejs.nameserver property in

the CICS System Definition Guide.

CORBASERVER JNDI prefix:

Enter the JNDI prefix of your CorbaServer. If you are using the

CORBASERVER definition supplied in DFH$EJB, you do not need to

change the default value of “samples”.

Bean name:

Enter the name of the enterprise bean used by the sample, as defined in

the deployment descriptor in the supplied SampleEJB.jar file. Unless you

have renamed the bean, you do not need to change the default value of

“CICSSample”.

Container Distinguished Name:

If you are using an LDAP name server, enter the distinguished name of the

LDAP system namespace root, as supplied by your LDAP administrator.

(The distinguished name of the LDAP system namespace root is specified

by the com.ibm.ws.naming.ldap.containerdn property in your JVM

properties file.) If you are using a COS Naming Server, the value of this field

is ignored.

Node Root Relative Distinguished Name:

If you are using an LDAP name server, enter the distinguished name of the

LDAP node root, as supplied by your LDAP administrator. (The

distinguished name of the LDAP node root is specified by the

com.ibm.ws.naming.ldap.noderootrdn property in your JVM properties file.)

If you are using a COS Naming Server, the value of this field is ignored.

JNDI Initial Context Factory:

Select the appropriate JNDI initial context factory from the drop-down list. If

your Web application server is WebSphere, the factory to use depends on:

v The version of WebSphere you’re using

v The location of WebSphere—that is, whether it’s on a distributed platform

such as Windows NT or a host platform such as z/OS or OS/390

v The type of name server you’re using—COS naming or LDAP

Table 13 on page 274 shows the correct initial context factory to specify, if

your Web application server is WebSphere.

Chapter 19. Running the sample EJB applications 273

Table 13. Setting the initial context factory, according to the version and location of WebSphere and the type of name

server

WebSphere

Version

Location of Web

application

server

Name server

type

Initial context factory to use

3.5 Distributed COS com.ibm.ejs.ns.jndi.CNInitialContextFactory

3.5 Distributed LDAP com.ibm.jndi.LDAPCtxFactory

3.5 z/OS or OS/390 COS com.sun.jndi.cosnaming.CNCtxFactory

3.5 z/OS or OS/390 LDAP com.sun.jndi.ldap.LdapCtxFactory

4 or later Distributed COS or

LDAP

com.ibm.websphere.naming.WsnInitialContextFactory

4 or later z/OS or OS/390 COS com.sun.jndi.cosnaming.CNCtxFactory

4 or later z/OS or OS/390 LDAP com.sun.jndi.ldap.LdapCtxFactory

If your Web application server is not WebSphere, choose the appropriate

value from the drop-down list.

Note: The drop-down list contains several initial context factory classes,

plus a “default” list item. The sample application assigns the value of

the default list item as follows:

a. If the com.ibm.websphere.naming.WsnInitialContextFactory

class is found in the Java classpath, the sample makes it the

default item. This class is a “wrapper” class that wraps both

com.ibm.ejs.ns.jndi.CNInitialContextFactory and

com.ibm.jndi.LDAPCtxFactory. The sample determines the

correct base class to use by examining the type of name server

that you’ve specified in the Provider URL field: if the specified

protocol is “iiop”, the sample uses

com.ibm.ejs.ns.jndi.CNInitialContextFactory; if it’s “ldap”, the

sample uses com.ibm.jndi.LDAPCtxFactory.

b. If the com.ibm.websphere.naming.WsnInitialContextFactory

class is not found in the Java classpath, the sample determines

the correct class to use by examining the type of name server

that you’ve specified in the Provider URL field: if the specified

protocol is “iiop”, the sample uses

com.ibm.ejs.ns.jndi.CNInitialContextFactory; if it’s “ldap”, the

sample uses com.ibm.jndi.LDAPCtxFactory.

 If none of the values in the drop-down list are valid for your installation,

select the Other radio button and enter the correct value in the lower text

field.

5. Press the SUBMIT button. This invokes the servlet and runs the application.

If the application is configured correctly and the input values are valid, the

SampleResults JSP displays the customer’s details in the browser. Figure 27 on

page 275 shows the result of a successful enquiry.

274 Java Applications in CICS

If the application is not configured correctly, or one or more of the input values

is invalid, the SampleError JSP displays an error message in the browser. The

readme.txt file contains hints and tips that may help you debug a failed

application.

A note about distributed transactions

A number of protocols exist to support distributed transactions. The CICS enterprise

Java environment supports only the CORBA Object Transaction Service (OTS)

protocol. However, some J2EE-compliant web application servers (such as

WebSphere) either do not use this protocol, or do not use this protocol by default.

WebSphere can be configured to use pure OTS distributed transactions; for detailed

instructions on how to set up WebSphere to use the OTS, see the readme.txt file

supplied with the Bank Account sample.

If objects on your web application server call CICS enterprise beans within the

scope of existing transaction contexts, you must set up your web application server

to use the CORBA OTS.

Changing the sample to use distributed transactions

You can try this exercise to test whether or not your J2EE web application server is

fully compatible with CICS.

By default, the EJB Bank Account sample is not configured to use distributed

transactions. However, you can change this. The SampleServlet servlet contains

Figure 27. Results screen of the EJB Bank Account sample application

Chapter 19. Running the sample EJB applications 275

sample code, which has been commented-out, to turn on client-demarcated

transactions. (The SampleServlet.java source file is in the CicsSample.ear file.)

To turn on client-demarcated transactions:

1. Uncomment the transaction-related code in SampleServlet.java.

2. Recompile the SampleServlet servlet.

3. Install the updated copy of the servlet into your web application server.

If you set up the sample to use client-demarcated transactions but your J2EE web

application server does not support (or is not configured to use) pure OTS

transactions, when you run the sample CICS throws an

org.omg.CORBA.INVALID_TRANSACTION exception. This is because a transaction

context was sent but CICS could not use it.

Changing the enterprise bean’s transaction attribute

You may also want to change the enterprise bean’s transaction attribute (in the

deployment descriptor) from ’Supports’ to ’Mandatory’. If you do this, CICS allows

the remote method of the bean to be invoked only if an existing OTS transaction

context is passed from the client’s environment on the call.

If, on the other hand, you leave the enterprise bean’s transaction attribute set to

’Supports’, CICS binds the method invocation to the client’s transaction context if

such a context exists; otherwise the method runs in an atomic transaction and does

not propagate a new transaction context when calling other beans.

To change the transaction attribute, you can use the Assembly Toolkit (ATK), which

is described in the CICS Operations and Utilities Guide. Having changed the

transaction attribute, to make the change effective you must:

1. Store the updated SampleEJB.jar file in your pickup directory (overwriting the

previous version).

2. Issue a CEMT CORBASERVER(corbaserver_name) PERFORM SCAN command.

If you set the transaction attribute to ’Mandatory’ but don’t update the servlet to use

client-demarcated transactions, when you run the sample CICS throws a

javax.transaction.TransactionRequiredException. This is because no transaction

context has been sent.

A note about data conversion

To represent text data, Java programs always use the Unicode character set, while

CICS TS programs use EBCDIC. When a Java program or enterprise bean calls a

CICS TS server program, any text values in the communications area of the server

program must be converted from Unicode to EBCDIC on input, and from EBCDIC

to Unicode on output. The enterprise bean in the EJB Bank Account sample uses

the CCI Connector for CICS TS, which handles this data conversion

automatically—see “Data conversion and the CCI Connector for CICS TS” on page

315.

Note: Only the text data returned by COBOL program DFH0CSTD is converted

from EBCDIC to Unicode . (No conversion is necessary for server program

DFH0ACTD, nor on input to DFH0CSTD, because there are no text values in

the communications areas.)

276 Java Applications in CICS

Chapter 20. Writing enterprise beans

You can write session beans that use the interfaces defined by Sun Microsystem’s

Enterprise JavaBeans Specification, Version 1.1, which is described at

http://www.javasoft.com/products/ejb. The interfaces used by these beans are

mapped to CICS services and resources and the beans are portable to any other

EJB-compliant server.

You can also write session beans that use the JCICS classes to access CICS

services and resources directly. These beans are portable only to other CICS EJB

servers.

CICS does not support entity beans—that is, you cannot run entity beans in a CICS

EJB server. (A session bean or program running in a CICS EJB server can

communicate with an entity bean running in a non-CICS EJB server.)

You can write your beans on a workstation using any integrated development

environment (IDE) that supports the Enterprise JavaBeans Specification, Version

1.1.

When developing new Java enterprise beans and programs for CICS , you should

use an application development environment that supports Java 2 at the SDK 1.4

level. You should not:

v Use any API calls that are supported only by a newer version of the Java SDK

than that supported by CICS. (Currently, CICS supports SDK 1.4.2.)

v Use features supported only by a later version of Sun’s Enterprise JavaBeans

Specification than that supported by CICS. (Currently, CICS supports the

Enterprise JavaBeans Specification, Version 1.1.)

Any enterprise beans developed to the EJB 1.0 specification must be migrated to

the EJB 1.1 specification level using the supplied development tools—see “The

deployment tools for enterprise beans in a CICS system” on page 291.

“Coding a session bean” on page 278 gives an example of the steps involved in

writing a session bean without using an IDE.

You can use the CCI Connector for CICS TS to build enterprise beans that make

use of existing CICS programs. See Chapter 23, “The CCI Connector for CICS TS,”

on page 307 for a description of the CCI Connector for CICS TS , and how to use

it.

Preparing beans for execution

The process of installing and preparing an enterprise bean for execution is known

as deployment.

CICS provides workstation based tools to manage the deployment of enterprise

beans into the host CICS environment.

The workstation and WebSphere components of the deployment tools are supplied

as a set of InstallShield packages. You can download these packages from your

z/OS system or run them from the supplied CD on the target workstation.

© Copyright IBM Corp. 1999, 2006 277

See Chapter 21, “Deploying enterprise beans,” on page 291 for a description of the

deployment process, and “Using CICS deployment tools for enterprise beans” on

page 292 for guidance on using the tools.

Coding a session bean

This section describes how to code a very simple session bean. When you have

completed the steps in this section, you will have a jar file that is ready for

deployment. See Chapter 21, “Deploying enterprise beans,” on page 291 for a

description of the deployment process and the tools available to help you.

The example bean shown here simulates a roulette wheel in a casino. The roulette

wheel is a stateful session bean, containing two stateful fields. The first field is the

current number that the wheel is on; the second field is the amount of credit the

gambler still has for betting. The client creates a roulette wheel, optionally

specifying the amount of money to gamble (defaulting to 100 dollars if the amount

is not supplied). The client can place bets on the color that will come up and then

the wheel spins and tells the caller if he has won or not. The client may then collect

the winnings or continue betting.

There are three elements that you must code:

1. “Coding the home interface.”

2. “Coding the remote interface.”

3. “Coding the bean implementation” on page 279.

Then you need to compile and package your program:

1. “Compiling the code” on page 281

2. “Packaging the code” on page 281

Coding the home interface

The home interface for a bean extends the javax.ejb.EJBHome interface. It defines

one or more create methods that the client program may call to create a bean

instance. For stateless session beans there must be exactly one create method

taking no parameters. Stateful session beans may overload the create method with

different variants taking different combinations of parameters. The RouletteWheel

bean is a stateful session bean. We overload create so that we can specify the

amount of credit we have on a roulette wheel instance when it is created:

package casino;

 public interface RouletteWheelHome extends javax.ejb.EJBHome {

 public RouletteWheel create()

 throws javax.ejb.CreateException, javax.ejb.EJBException;

 public RouletteWheel create(int dollars)

 throws javax.ejb.CreateException, javax.ejb.EJBException;

 }

Coding the remote interface

The remote interface for a bean extends the javax.ejb.SessionBean interface. The

remote interface defines the actual business methods a client program may call on

an individual bean instance:

package casino;

 public interface RouletteWheel extends javax.ejb.EJBObject {

278 Java Applications in CICS

// Place a bet on either "red" or "black" of the given amount,

 // the return value indicates to the caller whether the bet was

 // successful or not.

 public String bet(String bet,int amount) throws javax.ejb.EJBException;

 // Check the current status of the wheel.

 public String getCurrentStatus() throws javax.ejb.EJBException;

 // Collect winnings from the wheel (if any!)

 public int collectWinnings() throws javax.ejb.EJBException;

 }

Coding the bean implementation

This class implements the business methods defined in the bean remote interface.

It also defines some standard methods that are declared abstract on SessionBean

and so these methods should be implemented for our bean implementation to be

complete. Finally, because we overloaded the create method on the home interface,

we must provide matching ejbCreate methods in the bean implementation that

accept the same sets of parameters. This is because the bean implementation

class is the only place that you put your bean code. The implementation of the

home interface that we defined in “Coding the home interface” on page 278 is

generated by the tooling, so if we need to implement an overloaded create method,

we have to do it here:

package casino;

 import java.util.Random;

 import javax.ejb.*;

 public class RouletteWheelBean implements SessionBean {

 // Necessary code to fulfill SessionBean interface definition.

 private SessionContext ctx = null;

 public void ejbActivate() throws javax.ejb.EJBException {}

 public void ejbPassivate() throws javax.ejb.EJBException {}

 public void ejbRemove() throws javax.ejb.EJBException {}

 public SessionContext getSessionContext() { return ctx; }

 public void setSessionContext(SessionContext ctx) throws

 javax.ejb.EJBException { this.ctx = ctx;

 }

 /////////////////////////////

 // The bean state information

 private int wheelValue;

 private int currentCredit;

 /////////////////////

 // Our create methods

 public void ejbCreate() throws javax.ejb.EJBException, CreateException {

 currentCredit = 100;

 wheelValue = ((int)System.currentTimeMillis())%37;

 }

 public void ejbCreate(int credit) throws javax.ejb.EJBException,

 CreateException { currentCredit = credit;

 wheelValue = ((int)System.currentTimeMillis())%37;

 }

 ///

Chapter 20. Writing enterprise beans 279

// Implementations of the remote methods the client may call on an instance

 //

 // Place a bet, either "red" or "black" for the specified amount.

 // Then simulate the wheel spinning and construct a response string

 // indicating the outcome to the caller.

 //

 public String bet(String color,int amount) throws javax.ejb.EJBException {

 if (!color.equalsIgnoreCase("red") && !color.equalsIgnoreCase("black"))

 return new String("You can only bet on red or black");

 if (amount > currentCredit)

 return new String("You only have $"+currentCredit+" !");

 // Use the current wheel value as the random number seed

 Random randomizer = new Random((long)wheelValue);

 // Spin the wheel

 wheelValue = Math.abs(randomizer.nextInt()) % 37;

 // Construct a reply

 StringBuffer result =

 new StringBuffer("Number: "+wheelValue+" Color: "+color(wheelValue)+"\n");

 // Did the caller win?

 if (color(wheelValue).equalsIgnoreCase(color)) {

 currentCredit+=(amount*2);

 result.append("Well Done! You won $");

 result.append((amount*2));

 } else {

 currentCredit -= amount;

 result.append("Bad Luck! You lost $");

 result.append(amount);

 }

 result.append(", you now have $");

 result.append(currentCredit);

 return result.toString();

 }

 //

 // Return the current status of this roulette wheel instance.

 // The number and color

 // it is currently on and the amount of credit the client still has to gamble.

 //

 public String getCurrentStatus() throws javax.ejb.EJBException {

 return new String("Number:"+wheelValue+" Color:"+color(wheelValue)+"

 You have $"+currentCredit);

 }

 //

 // Allow the client to collect his winnings, then zero the credit so

 // they cannot collect twice!

 //

 public int collectWinnings()throws javax.ejb.EJBException {

 int winnings = currentCredit;

 currentCredit = 0;

 return winnings;

 }

 //

 // Convert a number on the wheel into a color

 //

 private String color(int value) {

280 Java Applications in CICS

if (value == 0) return "Green";

 if (value % 2 == 0) return "Black";

 return "Red";

 }

 }

Compiling the code

All that you need in addition to the base SDK is the jar file containing the javax.ejb

interfaces. This is available as ejb11.jar in the standard/ejb/1_1 directory of the

java installation. If you add ejb11.jar to your CLASSPATH, you should be able to

compile the classes and interfaces described.

Packaging the code

The compiled classes must be packaged in a jar file ready for deployment.

Assuming the class files are in the sub directory casino, the following jar command

can be used:

 jar -cvf casino.jar casino*.class

Writing the client program

A client program is any program that calls an enterprise bean. It can be:

1. Another enterprise bean, JavaBean, Java program, or object executing in the

same CICS

2. An enterprise bean, JavaBean, Java program, or object executing in another

CICS

3. An enterprise bean, JavaBean, Java program, or object executing on a

non-CICS system or workstation

The client obtains references to bean homes of enterprise beans that it wants to

call by using the JNDI namespace it shares with the CICS server environment.

Creating object references in the namespace

To create object references, you need to publish the beans that are installed in your

CICS region. You can do this in two ways:

1. Issue PERFORM DJAR(XXXX) PUBLISH on the server CICS system. You can

use any of the following methods to do this:

v CEMT

v CICSPlex SM

v A CICS application

For each bean installed from the named DJAR, an object reference is published

to the naming directory server. See “Defining name servers” on page 168 for

information about using name servers.

2. If you have installed a number of DJARs into a single CORBASERVER, you

can use the PERFORM CORBASERVER(XXXX) PUBLISH command to publish

every bean currently installed under that CORBASERVER. The subcontext in

the namespace where the object references for the beans will appear is

determined by the JNDI prefix defined in the resource definition of the

CORBASERVER into which the DJAR was installed.

Retraction is never done implicitly. The recommended way to ’unpublish’ beans is to

issue PERFORM DJAR(XXXX)/CORBASERVER(XXXX) RETRACT. If a DJAR or

CORBASERVER is simply discarded, the bean object references will still exist in

Chapter 20. Writing enterprise beans 281

the namespace, although they will be unusable by a client since the actual beans

no longer exist in CICS. It is possible to reinstall a DJAR and retract those

references.

Using JNDI to obtain bean references

Java Naming and Directory Interface (JNDI) defines an application programming

interface (API) specified in the Java programming language that provides the

naming and directory function to Java programs. It also defines a service provider

interface (SPI) that allows various directory and naming service drivers to be

plugged in.Figure 28 illustrates this by showing a Naming Manager interfacing with

a Java application by means of the JNDI API, and with various Name servers via

the JNDI SPI.

The JNDI API and the SPI are described in documents that are available from the

Sun Microsystem’s web site at http://www.javasoft.com/products/jndi/index.dital . An

overview is available at http://www.javasoft.com/products/jndi/tutorial/getStarted/
overview/index.dital .

After an enterprise bean has been registered in a name server by the administrator

of the server system, using PERFORM CORBASERVER/DJAR PUBLISH, a client

application can use the JNDI interface to locate its home interface.

To enable this, you must set up a suitable name server that supports the Java

Naming and Directory Interface (JNDI) Version 1.2, and then define its location to

CICS. This is described in “Setting up an LDAP server” on page 170 and “Setting

up a COS Naming Directory Server” on page 180, and for details of the JVM

properties that are needed, see the CICS System Definition Guide

Writing a Client program to use LDAP

CICS Transaction Server supports LDAP. Some changes to your client programs

might be necessary to allow a client program to find the bean homes published

from a CICS region. An LDAP client must use either the WebSphere Context

Factory or the Sun LDAP Context Factory. The advantage of using the WebSphere

Context Factory is that it understands automatically the system name space (that is

the structured name space on the LDAP server into which CICS publishes your

bean homes). However, this context factory has a number of dependencies and so

is not the most lightweight client. The SUN context factory has no dependencies

apart from the base IBM Developer Kit for the Java Platform and so is very

lightweight, however it does not understand the system name space and so it is

necessary to negotiate it programmatically, but there are some utility methods

provided by CICS to help with this.

Java Application

Naming Manager

JNDI API

JNDI SPI

LDAP CORBA

Figure 28. JNDI structure

282 Java Applications in CICS

These alternatives are best demonstrated by examples:

WebSphere Context Factory

The next listing shows an example of some client source code that uses the

WebSphere context factory to locate the home for a HelloWorld bean:

 import org.omg.CORBA.ORB;

 import java.io.*;

 import javax.naming.*;

 import examples.helloworld.*;

 import java.util.*;

 public class WASNamingClient {

 public static void main(String[] argv) {

 try {

 // Set the necessary properties

 Properties prop = new Properties();

 // These four are *fixed* values, you never need to change them.

 prop.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

 prop.put("com.ibm.websphere.naming.namespaceroot","bootstraphostroot");

 prop.put("com.ibm.ws.naming.ldap.config","local");

 prop.put("com.ibm.ws.naming.implementation","WsnLdap");

 // These two depend on your server settings and should match your CICS region settings

 prop.put("com.ibm.ws.naming.ldap.containerdn","ibm-wsnTree=WASNaming,c=us");

 prop.put("com.ibm.ws.naming.ldap.noderootrdn",

 "ibm-wsnName=legacyroot,ibm-wsnName=PLEX2,ibm-wsnName=domainRoots");

 // Finally, instead of com.ibm.cics.ejs.nameserver,

 // set com.ibm.ws.naming.ldap.masterurl to your destination LDAP server

 prop.put("com.ibm.ws.naming.ldap.masterurl","ldap://wibble.hursley.ibm.com:389");

 InitialContext ctx = new InitialContext(prop);

 org.omg.CORBA.Object obj =

 (org.omg.CORBA.Object)ctx.lookup("samples/HelloWorld");

 HelloWorldHome hhome =

 (HelloWorldHome)javax.rmi.PortableRemoteObject.narrow

 (obj,HelloWorldHome.class);

 System.out.println("HelloWorldHome successfully found!");

 HelloWorld hello = hhome.create();

 System.out.println(hello.sayHello());

 } catch (Exception e) {

 System.err.println("Exception whilst looking up and calling the HelloWorld bean:");

 e.printStackTrace();

 }

 }

 }

As noted in the the comments, the first four properties are fixed, the remaining

three match settings for your CICS region (Albeit the com.ibm.cics.ejs.nameserver

property has become com.ibm.ws.naming.ldap.masterurl). However, the WebSphere

Context Factory has dependencies on components of WebSphere so in order to run

it from the command line you must run a script to set up your environment

appropriately.

Chapter 20. Writing enterprise beans 283

The script DFHWAS4Setup.bat is a command line script provided with CICS. It can be

downloaded from the utils subdirectory in the HFS area where CICS is installed. It

must be run on a system that has WebSphere installed, because it relies on the

environment variable WAS_HOME being set to point to the location where

WebSphere has been installed, for example c:\WebSphere\AppServer. When the the

script has been run, you should extend your CLASSPATH further to include the

necessary client side code for your Enterprise Bean. For the example above this is

the HelloWorld.jar - then the code above can be compiled and executed. (The

example code assume that the home is published in a CorbaServer whose JNDI

Prefix is samples).

In CICS we set com.ibm.cics.ejs.nameserver = <hostname> but in this client

program, we set com.ibm.ws.naming.ldap.masterurl = <hostname>. CICS

understands the former, WebSphere understands the latter.

SUN LDAP Context Factory

From an IBM Developer Kit for the Java Platform configuration point of view, it is

much easier to use the SUN LDAP Context Factory, since it is provided in the IBM

Developer Kit for the Java Platform base and has no dependencies outside of it.

However, because this context factory does not understand the namespace

structure that exists on any LDAP server configured for WebSphere, it can be more

demanding for the client application programmer. CICS provides some namespace

helper functions that ease this added complexity. The

com.ibm.cics.portable.CICSNameSpaceHelper class is provided in

CICSEJBClient.jar. This JAR file is available in the utils subdirectory in the HFS

area where CICS is installed.

Here is an example of using this class:

 import org.omg.CORBA.ORB;

 import java.io.*;

 import examples.helloworld.*;

 import javax.naming.*;

 import javax.naming.directory.*;

 import java.util.*;

 import com.ibm.cics.portable.CICSNameSpaceHelper;

 public class SUNNamingClient {

 public static void main(String[] argv) {

 try {

 Hashtable env = new Hashtable();

 // Set up the first two obvious properties, the Sun LDAP factory and LDAP server

 env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");

 env.put(Context.PROVIDER_URL, "ldap://wibble.hursley.ibm.com:389");

 // These two settings match the values from the CICS system

 env.put("com.ibm.ws.naming.ldap.containerdn", "ibm-wsnTree=WASNaming,c=us");

 env.put("com.ibm.ws.naming.ldap.noderootrdn",

 "ibm-wsnName=legacyroot,ibm-wsnName=PLEX2,ibm-wsnName=domainRoots");

 // Use the LDAPSNSLookup helper method to negotiate the WebSphere System Name

 // Space on wibble.hursley.ibm.com and locate our HelloWorld bean. "samples"

 // is the JNDI prefix on the CICS CorbaServer that published the HelloWorld Bean.

 org.omg.CORBA.Object obj =

 CICSNameSpaceHelper.LDAPSNSLookup(env,"samples/HelloWorld");

 HelloWorldHome hhome =

 (HelloWorldHome)javax.rmi.PortableRemoteObject.narrow

 (obj,HelloWorldHome.class);

284 Java Applications in CICS

System.out.println("HelloWorld home successfully found!");

 Hello hello = hhome.create();

 System.out.println(hello.sayHello());

 } catch (Exception e) {

 System.err.println("Exception whilst looking up and calling the HelloWorld bean:");

 e.printStackTrace();

 }

 }

 }

You are using the SUN LDAP code, which understands the providerURL property,

rather than the masterurl property used in the WebSphere Context Factory

example.

The helper class CICSNameSpaceHelper may also work with other context factories.

Notice that the syntax of the name passed to LDAPSNSLookup is JNDI syntax

a/b/c/d.

Writing a client program to use COS Naming

The following example shows a client program, Gambler.java, that works with the

RouletteWheel bean developed in “Coding a session bean” on page 278. When a

bean reference is obtained from a COS Naming namespace, there are a number of

operations that must be performed before the client can use that reference. These

operations are the same for the majority of client programs, so they are collected in

the utility class EJBUtils. This utility class is used by the client program Gambler.

EJBUtils.java

 import javax.naming.*;

 import java.util.Hashtable;

 class EJBUtils {

 public static Object jndi_lookup(String name, Class resultClass) {

 // Set up environment for creating initial context

 Hashtable env = new Hashtable(11);

 // Define the nameserver - see note 1 below

 env.put(Context.PROVIDER_URL,

 "iiop://wibble.wobble.com:900");

 // Define the initial context factory -see note 2

 env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.sun.jndi.cosnaming.CNCtxFactory");

 try {

 // Create the initial context

 Context ctx = new InitialContext(env);

 // Lookup the object

 Object tempObject = ctx.lookup(name);

 // Narrow that to the requested class

 return javax.rmi.PortableRemoteObject.narrow(tempObject,resultClass);

 } catch (NamingException ne) {

 System.err.println("EJBUtils.jndi_lookup() failed:");

 ne.printStackTrace();

 }

 return null;

Chapter 20. Writing enterprise beans 285

}

 }

Note:

1. Here we define the nameserver that will be used to lookup beans as

″iiop://wibble.wobble.com:900″. This value should be the name of your

nameserver, and must match the java.naming.provider.url that was

defined in the CICS JVM properties file, so that the client looks up the

bean on the same nameserver it was published into by CICS. See

“Defining name servers” on page 168 for information about using name

servers.

2. Here we define the initial context factory for your client environment. you

should set it to the value required by your client environment. The

example shows the value you would set when using the ORB included

with the IBM SDK. If your client is a java application or enterprise bean

running in CICS Transaction Server for z/OS, Version 2, then you should

not specify an initial context factory here, but should allow it to default to

com.ibm.websphere.naming.wsnInitialContextFactory.

Gambler.java

 import org.omg.CORBA.ORB;

 import java.io.*;

 import casino.*;

 public class Gambler {

 public static void main(String[] argv) {

 try {

 System.out.println("Gambler\n");

 System.out.println("Looking up RouletteWheel home");

 RouletteWheelHome wheelHome =

 (RouletteWheelHome)

 EJBUtils.jndi_lookup("cics/ejbs/RouletteWheel",

 RouletteWheelHome.class);

 //

 // See Note 1.

 //

 System.out.println("Creating a new roulette wheel");

 RouletteWheel wheel = wheelHome.create();

 System.out.println("");

 System.out.println("Gambling $50 on red !");

 System.out.println(wheel.bet("red",50));

 System.out.println("");

 System.out.println("Gambling $20 on black !");

 System.out.println(wheel.bet("black",20));

 System.out.println("");

 System.out.println("Gambling $20 on red !");

 System.out.println(wheel.bet("red",20));

 System.out.println("");

 System.out.print("Collecting winnings:$");

 System.out.println(wheel.collectWinnings());

 System.out.println("");

286 Java Applications in CICS

System.out.print("Removing the roulette wheel");

 wheel.remove();

 } catch (Exception e) {

 System.err.println("Error whilst gambling:");

 e.printStackTrace();

 }

 }

 }

Note:

1. The client program Gambler.java looks up the RouletteWheel at

″cics/ejbs″ in the namespace. This means the CORBASERVER in CICS

into which you have installed the RouletteWheel bean must have a JNDI

prefix of cics/ejbs. Once installed and published the RouletteWheel will

then be accessible by the client program.

2. There is a remove call at the end of this client program. The roulette

wheel bean is stateful and CICS manages the state of every instance.

Unless remove is called when you finish operating with that bean instance

then CICS will continue to store it. Bean timeout can be controlled using

the SESSBEANTIME parameter of the CORBASERVER resource

definition. This indicates to CICS how long it should manage instance

state if no requests are coming in to utilize that instance, implementing a

kind of garbage collection. However, it is good programming practice to

call remove when you have finished working with an instance so that you

do not depend on this type of garbage collection.

Using the client program

When compiling the client program, your classpath must be set carefully to include

the deployed jar file you successfully processed earlier with the CICS Jar

Development Tool, and also the javax.ejb interfaces for EJB 1.1 support, which are

available in ejb11.jar in the standard/ejb/1_1 directory of the java installation.

Once compiled, simply run the client with:

 java Gambler

Transaction interoperability with web application servers

A number of protocols exist to support distributed transactions. The CICS enterprise

Java environment supports only the standard CORBA Object Transaction Service

(OTS) protocol. However, some J2EE-compliant web application servers (such as

WebSphere Version 4) either do not use this protocol, or do not use this protocol by

default.

If objects on your web application server call CICS enterprise beans within the

scope of existing transaction contexts, you must set up your web application server

to use the CORBA OTS. If this is not possible, your web application server is not

fully compatible with CICS enterprise Java support. (For a way of using the EJB

Bank Account sample application to test whether your web application server is fully

compatible with CICS enterprise Java support, see “A note about distributed

transactions” on page 275.)

If your web application server is WebSphere Application Server Version 4, be aware

that, by default, it does not use the standard CORBA OTS, but can be made to do

so. If you have WebSphere objects that call CICS enterprise beans within the scope

Chapter 20. Writing enterprise beans 287

of existing transaction contexts, you must set up WebSphere to use the CORBA

OTS. Versions of WebSphere Application Server from Version 5 onwards are not

affected by this problem.

To force WebSphere Application Server to use the CORBA OTS:

1. At the WebSphere Administration Console, select the JVM settings tab.

2. Enter the following in the System Properties section:

com.ibm.ejs.jts.ControlSet.interoperabilityOnly=true

com.ibm.ejs.jts.ControlSet.nativeOnly=false

Save your changes.

3. Restart the application server.

Working with EJB Handles, HomeHandles and EJBMetaData

The Enterprise JavaBeans specification describes how a session bean supports not

only the methods defined on its remote interface but some additional methods:

v There are methods defined on the EJBHome interface, they are callable by a

client wishing to:

– obtain a “storable” reference to the home (a home handle), or

– obtain the EJBMetaData for the bean type.

.

v There are methods defined on the EJBObject interface, they are are callable by a

client wishing to:

– obtain the home for the EJB, or

– obtain a “storable” reference to the object itself (a handle).

The purpose of handles is that they are serializable, once a handle is obtained for a

bean instance it can be serialized, perhaps to a flat file. If, sometime later, a

program wishes make calls against that same instance, it can deserialize the

handle and start calling methods again. The implementations of the handles and the

meta data class are product specific.

In CICS, the implementations of the three interfaces HomeHandle, Handle and

EJBMetaData are:

v com.ibm.cics.portable.CICSSessionHomeHandle,

v com.ibm.cics.portable.CICSSessionHandle, and

v com.ibm.cics.portable.CICSEJBMetaData.

These implementations are included in the CICSEJBClient.jar JAR file, which can

be downloaded from the utils subdirectory in the HFS area where CICS is

installed. This jar should be included in the CLASSPATH of any client program

calling the special methods described above, to ensure it understands the types of

object returned from the server. If, for example, its CLASSPATH does not include

CICSEJBClient.jar, a client program that calls the getEJBMetaData function of an

enterprise bean may be returned either of the following:

1. An exception

2. Null

The precise value returned depends on the implentation of the client’s object

request broker (ORB).

288 Java Applications in CICS

|
|

Using EDF with enterprise beans

To use EDF to test enterprise beans, you must:

v Set the CEDF parameter to YES in the PROGRAM resource definition for

DFJIIRP that is supplied in group DFHIIOP.

v Set MAXACTIVE to one in TRANCLASS(DFHEDFTC).

v Activate EDF by entering CEDX (transid) at the terminal where the transaction

will be trapped. The transid is either the default transid CIRP or the transaction

specified on the RequestModel definition.

v Initiate the bean.

Bean-to-bean communication

If your bean uses bean-to-bean communication with the same transaction id within

the same AOR, setting MAXACTIVE to one will result in the communication not

working. This is because the execution of the second transaction will be suspended

waiting for a slot in which to execute, and the original bean will then experience a

“timeout” condition. The way to avoid this is to take one of the following actions:

v Use REQUESTMODELs to specify a unique transaction id for each bean.

v Allow all create methods to use CIRP (the default transaction id), and use

REQUESTMODELs to define a unique transaction id for each set of business

methods.

Note: When a bean is running inside a request processor, CICS will only utilize

requestmodels (and therefore start a new CICS transaction under the new

transaction ID) if a remote method call made by that bean cannot be

satisfied in the current request processor. A method call cannot be satisfied

locally in the current request processor if:

v The transaction attributes of the method being called require a different

transaction context

v The bean being called is in a different CorbaServer

Chapter 20. Writing enterprise beans 289

290 Java Applications in CICS

Chapter 21. Deploying enterprise beans

The concept of deployment is introduced in “Deploying enterprise beans—overview”

on page 214. This section explains the process of deploying enterprise beans into a

CICS EJB server in more detail.

The term “deployment” used in the EJB specification describes a series of tasks

that makes the enterprise beans in one or more JAR files available for use in a

specific operating environment (in this case, a CICS EJB server).

The deployment tools for enterprise beans in a CICS system

CICS supplies three tools to assist you in deploying enterprise beans into a CICS

EJB server:

v “The Assembly Toolkit (ATK)”

v “The resource manager for enterprise beans”

v “CREA”

The Assembly Toolkit (ATK)

The Assembly Toolkit (ATK) is a general tool used by several IBM EJB servers,

including CICS, to build JAR files ready for the runtime environment. The Assembly

Toolkit for Windows is supplied with WebSphere Application Server Version 5.0 and

later. (The Application Assembly Tool (AAT), provided with WebSphere Application

Server Version 4 and early copies of WebSphere Application Server Version 5.0,

can still be used but is not supported).

For detailed information about using ATK, see the CICS Operations and Utilities

Guide.

The resource manager for enterprise beans

The resource manager for enterprise beans is a web-based tool that enables you to

perform certain operations on the resources (CORBASERVERs and DJARs)

installed into CICS to support the use of enterprise beans.

The tool can also be used for EJB-related problem diagnosis, because it offers the

ability to view any errors associated with DJAR definitions, and indicates if the

beans in a deployed JAR file have been published to the naming service.

The tool enables you to perform common tasks without having to use a CICS

terminal.

For a full description of the resource manager for enterprise beans, see the CICS

Operations and Utilities Guide.

CREA

CREA is a CICS-supplied transaction that enables the system programmer (usually

with help from the application programmer) to create REQUESTMODEL definitions

for the beans in an installed deployed JAR file. CREA can install definitions into a

running CICS system by using EXEC CICS CREATE commands, or can write the

definitions to the CSD.

© Copyright IBM Corp. 1999, 2006 291

|

|
|
|
|
|
|

|
|

CREC is a read only version of CREA. It offers inspection facilities without giving

the ability to make changes.

For full descriptions of CREA and CREC, see the CICS Supplied Transactions

manual

CREA and CREC can be used without needing to access a 3270 terminal. For

details of such access, see the CICS Internet Guide.

Using CICS deployment tools for enterprise beans

To develop and deploy a bean into CICS, an application developer, working with a

CICS system programmer in the later stages, has to carry out a number of steps:

Develop the bean and make it deployable

Develop the bean and package it into a JAR file. The bean can be written

and tested using your choice of tooling.

Note: The JAR file may contain the Java classes for one or for several

enterprise beans. Typically a JAR file used in a CICS EJB server

contains several enterprise beans.
After the bean has been packaged in a JAR file, use ATK to make it

deployable. For a short introduction to ATK and a reference to further

information, see the CICS Operations and Utilities Guide.

Store in HFS pickup directory

Store a copy of the deployable JAR file in the HFS pickup directory of the

CorbaServer in which you want to run the bean. You can do this using FTP,

NFS, or SMB. If the HFS directory can be mounted on your workstation,

this process can be integrated into the previous JAR file creation process.

Scan the pickup directory

Using either CEMT or the resource manager for enterprise beans, initiate a

scan of the pickup directory. (For a description of the resource manager for

enterprise beans, see the CICS Operations and Utilities Guide.) CICS

creates and installs a DJAR definition for the deployed JAR file in the

pickup directory.

 After the pickup directory has been scanned, you can view the state of the

new DJAR definition to determine if the deployed JAR file is ready for use.

 If the deployed JAR file is not ready for use, the cause of the error can be

determined and in most cases corrected by an application developer

without the need for a system programmer to become involved.

Publish

Publish a reference to the home interface of each bean in the deployed

JAR file to an external namespace. The namespace is accessible to clients

through JNDI.

 If you specify AUTOPUBLISH(YES) on the CORBASERVER definition, the

beans in a deployed JAR file are automatically published to the namespace

when the DJAR definition is successfully installed into the CorbaServer.

Alternatively, you can issue a PERFORM CORBASERVER PUBLISH or

PERFORM DJAR PUBLISH command.

 The resource manager for enterprise beans (see the CICS Operations and

Utilities Guide) indicates if the “autopublish” feature is on or off.

292 Java Applications in CICS

Ensure any additional classes are on class paths

For enterprise beans, you do not need to add the deployed JAR files to the

class paths in the JVM profile or JVM properties file. CICS manages the

loading of the classes included in these files by means of the DJAR

definitions. However, if your enterprise beans use any classes, such as

classes for utilities, that are not included in the deployed JAR file, you do

need to include these classes on the shareable application class path that

will be used by the JVM for the request processor program. “Enabling

applications to use a JVM” on page 119 tells you how to do this.

Unit Test

Once the beans in the deployed JAR file have been published to the

naming server, the application programmer can unit test them in the CICS

environment.

System Test

When the beans are ready for system testing, an application programmer

can work with a system programmer to consider if any REQUESTMODEL

definitions are needed. Use the CICS-supplied transaction CREA to

generate REQUESTMODEL definitions. (For a description of CREA, see the

CICS Supplied Transactions manual.)

 You can identify the beans and bean methods from the application. Your

system programmer can associate the bean methods with transaction IDs

by causing the optimum set of REQUESTMODEL definitions to be

generated. Running different beans under different transaction IDs is useful,

for example, for workload-management purposes, and for gathering

effective monitoring and statistical information.

Install in production environment

To move from a system test to a production environment:

1. Use ATK to verify that the container bindings for resources and

references that have been set in the deployment descriptor of each JAR

file are appropriate for your production environment.

2. If you have set the DJARDIR parameter in your production region

CORBASERVER definition to identify a pickup directory:

a. Store the deployable JAR file in the pickup directory of the

CorbaServer.

b. Install the CORBASERVER definition.

c. A suitable DJAR definition is produced.

3. If not:

a. Store the deployable JAR file in the HFS directory that you intend to

use in the production region.

b. Install the production CORBASERVER definition.

c. Create an install a DJAR definition equivalent to that which you had

in your test region, using whatever process you would normally use

in your installation.

4. If you have set the AUTOPUBLISH(YES) parameter in your production

region CORBASERVER definition:

a. The beans in the deployed JAR file is automatically published to the

namespace when the DJAR definition is successfully installed into

the CorbaServer.

5. If not:

Chapter 21. Deploying enterprise beans 293

a. Publish the beans to the JNDI server that you use for production

using CEMT PERFORM CORBASERVER PUBLISH or CEMT

PERFORM DJAR PUBLISH.

6. Transfer REQUESTMODEL definitions from the test region CSD to the

production CSD using the process that you normally use in your

installation.

7. Ensure that any additional classes, such as classes for utilities, that are

not included in the deployed JAR files for your enterprise beans, are

present on the shareable application class path that will be used by the

JVM for the request processor program in your production system.

Note: If you want to update enterprise beans in a production region, see

Chapter 22, “Updating enterprise beans in a production region,” on

page 295.

294 Java Applications in CICS

Chapter 22. Updating enterprise beans in a production region

This section considers how best to update enterprise beans in a production region.

It contains the following topics:

v “The problem”

v “Possible solutions” on page 298

The problem

How do you update enterprise beans in a running CICS production region, while

causing the minimum disruption to the current workflow and without recycling

CICS?

It is simple enough to introduce new enterprise beans into a running EJB server

without disrupting the current workflow. You can do either of the following:

1. Use the CICS scanning mechanism. That is, place the deployed JAR file

containing the new beans into a CorbaServer’s deployed JAR file (“pickup”)

directory and issue a PERFORM CORBASERVER SCAN command. Repeat on

all the AORs in the logical EJB server. If the CORBASERVER definition

specifies AUTOPUBLISH(NO), on one of the AORs issue a PERFORM DJAR

PUBLISH command.

Note: If you use the scanning mechanism in a production region, be aware of

the security implications: specifically, the possibility of CICS command

security on DJAR definitions being circumvented. To guard against this,

we recommend that user IDs given write access to the HFS deployed

JAR file directory should be restricted to those given RACF authority to

create and update DJAR and CORBASERVER definitions.

2. Use an EXEC CICS CREATE DJAR command to install a definition of the

deployed JAR file which contains the new beans. Repeat on all the AORs in the

logical EJB server. On one of the AORs, issue a PERFORM DJAR PUBLISH

command.

Unfortunately, because of the unpredictable effects on in-flight transactions, you

can’t use these methods to update beans in an active EJB server. You would have

no way of controlling which version of a bean, the old or the new, was used by

successive method calls. (Because of timing differences, the problem could well be

exacerbated in a multi-region EJB server.)

An alternative approach would be to quiesce and shut down CICS, then restart it

with the updated DJAR definitions in place. While this is acceptable in a test

environment, it is not an attractive solution for a production region. Consider

Figure 29 on page 297. Imagine that you want to update bean5 and bean6 in

CorbaServer COR2. If you were to close down CICS, not only would bean5 and bean6

be unavailable during the shutdown, but also all the beans in CorbaServer COR1.

What if your EJB server contains several AORs, with workload management being

used to balance requests across them? Could you not then shut down and upgrade

each AOR in turn, with a minimal effect on performance? Unfortunately not,

because:

v During the upgrade process, different AORs would have different versions of the

beans. Unless the new versions of the beans were completely

backward-compatible with the old versions, this would cause unpredictable

© Copyright IBM Corp. 1999, 2006 295

effects. (“Completely backward-compatible” means that, among other things, the

home and component interfaces of the two versions must be identical, and the

state of any stateful session beans must be preserved.)

v Shutting down even one AOR would inevitably degrade the performance of the

EJB server to some extent. (If the upgrade is an important one, this might be

acceptable. To compensate for the degraded performance you could, perhaps,

add an extra AOR to your EJB server.)

The rest of this chapter discusses what you need to do on a CICS EJB server to

update enterprise beans in production regions. Note that changes may also be

required on the client side. In particular, if, due to an update, the home or

component interface of an enterprise bean changes, before any client applications

can use the updated bean they must be rewritten to use the new interface.

296 Java Applications in CICS

CICS Listener/AOR

Pickup directory 1
HFS

Pickup directory 2

COR1

Bean1
Bean2

Bean3

Bean4

COR2

Bean5

Bean5

Bean6

Client1 Client2

Bean5
Bean6

DJAR3

Bean1
Bean2

DJAR1

Bean3
Bean4

DJAR2

Figure 29. A CICS EJB production region. The clients are invoking bean methods in CorbaServers COR1 and COR2.

You are recomended to divide beans between CorbaServers based on the beans’ maintenance and availability

requirements.

Chapter 22. Updating enterprise beans in a production region 297

Possible solutions

Here are some suggested solutions for our problem of how best to update beans in

a production region. The solutions offered depend on whether your EJB server

consists of a single listener/AOR or of multiple listeners and AORs.

As a general rule, upgrade solutions will be easier to implement if you:

1. Divide your enterprise beans between CorbaServers based not only on the

beans’ functions but also on their maintenance and availability requirements.

That is, sets of beans that have distinct maintenance and availability

requirements should be installed in distinct CorbaServers.

2. Allocate CICS transaction IDs to enterprise bean methods based not only on the

beans’ functions but also on their maintenance and availability requirements.

That is, for ease of maintenance sets of beans that have distinct maintenance

and availability requirements should run under distinct CICS transaction IDs.

Important:

a. In a multi-region EJB server, if your AORs contain multiple

CorbaServers you are strongly advised to assign different sets

of transaction IDs to the objects supported by each

CorbaServer. That is, each CorbaServer in an AOR should

support a different set of transaction IDs.

b. This makes it easier for the distributed routing program to route

around a disabled CorbaServer, while keeping available any

other, enabled, CorbaServers in the region. For further

information about how to code a distributed routing program to

deal with a disabled CorbaServer, see the CICS Customization

Guide.

Note: The CICS transaction under which a bean method runs is specified on

the REQUESTMODEL definition that matches the method. You can use

the CREA CICS-supplied transaction to:

v Display the transaction IDs associated with particular beans and bean

methods

v Change the transaction IDs, apply the changes, and save the changes

to new REQUESTMODEL definitions

Solutions for a single listener/AOR

These solutions are valid for an EJB server consisting of a single listener/AOR.

Let us assume that, in Figure 29 on page 297, you want to update bean5 and bean6

in CorbaServer COR2. DJAR3.jar is the deployed JAR file containing the beans to be

updated. You require:

1. CorbaServer COR1 and its beans to remain available throughout the upgrade

process.

2. If possible, the upgrade to the beans in CorbaServer COR2 to be seamless. That

is, there should be no time (or, at least, the smallest possible period of time)

during which it is impossible to create a new instance of bean5 or bean6.

Solution 1

The advantage of this solution is that it is relatively easy to implement. The

disadvantage is that it is not seamless—that is, there is a period (while instances of

298 Java Applications in CICS

the old versions of bean5 and bean6 are being destroyed or passivated) during

which it is impossible to create a new instance of bean5 or bean6.

1. Issue an EXEC CICS SET CORBASERVER(COR2) ENABLESTATUS(DISABLED)

or a CEMT SET CORBASERVER(COR2) DISABLED command. Any attempts to

create new instances of bean5 or bean6, regardless of whether the clients have

references to the beans’ home interfaces, will fail.

Typically, currently-executing methods on instances of bean5 and bean6 will

proceed to completion.

An instance of bean5 or bean6 that is not participating in an OTS transaction is

destroyed or passivated at the end of the currently-executing method. (If there is

no currently-executing method, all instances will already have been destroyed or

passivated.)

Note: Stateless session beans are destroyed. Stateful session beans are

passivated.

An instance of bean5 or bean6 that is participating in an OTS transaction is not

destroyed or passivated until the end of the OTS transaction; typically, any

future method calls against this instance (within the scope of the OTS

transaction) will succeed. At the end of the OTS transaction the instance is

destroyed or passivated.

2. Check when all instances of bean5 and bean6 have been destroyed or

passivated by issuing EXEC CICS or CEMT INQUIRE CORBASERVER(COR2)

ENABLESTATUS commands. A status of DISABLED indicates that all bean

instances have been destroyed or passivated.

3. When all instances of bean5 and bean6 have been destroyed or passivated,

install the updated version of the DJAR3.jar deployed JAR file, using either the

CICS scanning mechanism or a static DJAR definition. (You cannot use the

scanning mechanism to update a static DJAR definition.)

Either:

a. Put the new version of the DJAR3.jar deployed JAR file into CorbaServer

COR2’s pickup directory.

b. Issue a PERFORM CORBASERVER(COR2) SCAN command. CICS scans

COR2’s pickup directory, installs the new definition of DJAR3.jar, and copies

the new versions of bean5 and bean6 to COR2’s shelf directory.

or:

a. Issue an EXEC CICS or CEMT DISCARD DJAR(DJAR3) command, to

remove the current definition of DJAR3.jar from CICS.

b. Issue a CEDA INSTALL DJAR(DJAR3) or an EXEC CICS CREATE

DJAR(DJAR3) CORBASERVER(COR2)

HFSFILE(new_version_of_DJAR3.jar_on_HFS) command. CICS installs the

new definition of DJAR3.jar, and copies the new versions of bean5 and bean6

to COR2’s shelf directory.

Note:

a. It is not necessary to re-publish the updated versions of bean5 and

bean6 to the namespace, even if the home or component interfaces

of the beans have changed since the previous version.

b. If the home or component interface of bean5 or bean6 has changed

since the previous version, before using the changed bean client

applications must be updated to use the new signature.

c. If you update a stateful session bean, depending on exactly what

changes are made you may change the structure of its serialised

Chapter 22. Updating enterprise beans in a production region 299

state. If this happens, you will invalidate any passivated instances of

the bean in the object store. If this happens, any attempts to use the

now invalidated bean will result in an exception. You should code

your client applications to cope with this possibility.

4. Issue a CEMT SET CORBASERVER(COR2) ENABLED command. From this

moment, all new work will use the updated versions of bean5 and bean6.

Solution 2

This solution requires CICSPlex System Manager. All CICS applications on your

listener/AOR must be suitable for cloning across multiple regions.

The advantage of this solution is that, unlike solution 1, it is relatively

seamless—that is, there should at worst be only a tiny period during which it is

impossible to create a new instance of bean5 or bean6. The disadvantage is that it is

more complicated to implement than solution 1.

1. Using CICSPlex SM:

a. Clone your single listener/AOR.

b. Direct all new workload to the clone—that is, quiesce the original AOR and

activate the clone. For information on how to do this, see the CICSPlex

System Manager Managing Workloads manual.

All requests for bean methods that will run under a new OTS transaction, or

under no OTS transaction, whether in COR1 or COR2, are routed to the

clone.

Requests for bean methods that will run under an existing OTS transaction

(whether in COR1 or COR2) are routed to the original region.

Note:

1) By “a new OTS transaction” we mean an OTS transaction in

which the bean’s participation begins after all new work is

directed to the clone.

2) By “an existing OTS transaction” we mean an OTS transaction in

which the bean’s participation began before all new work was

directed to the clone.

On the original region:

v An instance of an enterprise bean that is not participating in an OTS

transaction is destroyed or passivated at the end of the

currently-executing method. (If there is no currently-executing method, all

instances will already have been destroyed or passivated.)

v An instance of an enterprise bean that is participating in an OTS

transaction is not destroyed or passivated until the end of the OTS

transaction; typically, any future method calls against this instance (within

the scope of the OTS transaction) will succeed. At the end of the OTS

transaction the instance is destroyed or passivated.

2. On the original region:

a. Check when all instances of bean1 through bean6 have been destroyed or

passivated:

1) If you don’t already know the CICS transaction ID or IDs associated with

bean1 through bean6, use the CREC transaction to display this

information.

2) Use the INQUIRE TASK command to check whether any instances of

these transactions are running.

300 Java Applications in CICS

b. When all instances of bean1 through bean6 have been destroyed or

passivated, install the updated version of the DJAR3.jar deployed JAR file,

using either the CICS scanning mechanism or a static DJAR definition. (You

cannot use the scanning mechanism to update a static DJAR definition.)

Either:

1) Put the new version of the DJAR3.jar deployed JAR file into

CorbaServer COR2’s pickup directory.

2) Issue a PERFORM CORBASERVER(COR2) SCAN command. CICS

scans COR2’s pickup directory, updates its definition of DJAR3.jar, and

copies the new versions of bean5 and bean6 to COR2’s shelf directory.

or:

1) Issue a CEMT DISCARD DJAR(DJAR3) command to delete the old

definition of DJAR3.jar.

2) Issue a CEDA INSTALL DJAR(DJAR3) or an EXEC CICS CREATE

DJAR(DJAR3) CORBASERVER(COR2)

HFSFILE(new_version_of_DJAR3.jar_on_HFS) command. CICS installs

the new definition of DJAR3.jar, and copies the new versions of bean5

and bean6 to COR2’s shelf directory.

Note:

1) It is not necessary to re-publish the updated versions of bean5

and bean6 to the namespace, even if the home or component

interfaces of the beans have changed since the previous version.

2) If the home or component interface of bean5 or bean6 has

changed since the previous version, before using the changed

bean client applications must be updated to use the new

signature.

3) If you update a stateful session bean, depending on exactly what

changes are made you may change the structure of its serialised

state. If this happens, you will invalidate any passivated instances

of the bean in the object store. If this happens, any attempts to

use the now invalidated bean will result in an exception. You

should code your client applications to cope with this possibility.

3. Using CICSPlex SM, direct all new workload to the original region—that is,

quiesce the clone and activate the original region.

All requests for bean methods that will run under a new OTS transaction, or

under no OTS transaction, whether in COR1 or COR2, are now routed to the

original region. From this moment, all new work will use the updated versions of

bean5 and bean6. Requests for bean methods that will run under an existing

OTS transaction (whether in COR1 or COR2) continue to be routed to the

clone.

Note:

a. By “a new OTS transaction” we mean an OTS transaction in which

the bean’s participation begins after all new work is redirected to the

original region.

b. By “an existing OTS transaction” we mean an OTS transaction in

which the bean’s participation began before all new work was

redirected to the original region.

Eventually, all instances of enterprise beans on the clone will be destroyed or

passivated, as described above.

Chapter 22. Updating enterprise beans in a production region 301

4. On the clone region, use the INQUIRE TASK command to check when all

instances of bean1 through bean6 have been destroyed or passivated. When this

has happened, you can discard the clone region.

Solutions for a multi-region EJB server

These solutions are valid for an EJB server consisting of one or more listener

regions and multiple, identical, AORs.

Assume that your EJB server consists of three identical listener regions and five

identical AORs. Each of the AORs is a clone of the region shown in Figure 29 on

page 297 (except that it is an AOR rather than a listener/AOR). All the AORs share

the same pickup directories, and the same sets of enterprise beans are deployed

on each, in identical CorbaServers named COR1 and COR2.

You want to update bean5 and bean6 in logical CorbaServer COR2. DJAR3.jar is the

deployed JAR file containing the beans to be updated.

You require:

1. Logical CorbaServer COR1 and its beans to remain available throughout the

upgrade process.

2. If possible, the upgrade to the beans in logical CorbaServer COR2 to be

seamless. That is, there should be no time (or, at least, the smallest possible

period of time) during which it is impossible to create a new instance of bean5 or

bean6.

Solution 1

This solution is a development of solution 1 for a single-region. Its advantage is that

it is relatively easy to implement. Its disadvantage is that it is not seamless—that is,

there is a period (while instances of the old versions of bean5 and bean6 are being

destroyed or passivated) during which it is impossible to create a new instance of

bean5 or bean6.

1. On each of the AORs, issue an EXEC CICS SET CORBASERVER(COR2)

ENABLESTATUS(DISABLED) or a CEMT SET CORBASERVER(COR2) DISABLED

command. On all the AORs:

v Any attempts to create new instances of bean5 or bean6, regardless of

whether the clients have references to the beans’ home interfaces, will fail.

v Typically, currently-executing methods on instances of bean5 and bean6 will

proceed to completion.

v An instance of bean5 or bean6 that is not participating in an OTS transaction

is destroyed or passivated at the end of the currently-executing method. (If

there is no currently-executing method, all instances will already have been

destroyed or passivated.)

v An instance of bean5 or bean6 that is participating in an OTS transaction is

not destroyed or passivated until the end of the OTS transaction; typically,

any future method calls against this instance (within the scope of the OTS

transaction) will succeed. At the end of the OTS transaction the instance is

destroyed or passivated.

2. On each of the AORs, check when all instances of bean5 and bean6 have been

destroyed or passivated by issuing EXEC CICS or CEMT INQUIRE

CORBASERVER(COR2) ENABLESTATUS commands. A status of DISABLED

indicates that all bean instances have been destroyed or passivated.

302 Java Applications in CICS

3. When all instances of bean5 and bean6, on all the AORs, have been destroyed

or passivated, install the updated version of the DJAR3.jar deployed JAR file,

using either the CICS scanning mechanism or static DJAR definitions. (You

cannot use the scanning mechanism to update static DJAR definitions.)

Either:

a. Put the new version of the DJAR3.jar deployed JAR file into CorbaServer

COR2’s pickup directory (which is shared by all the AORs).

b. On each of the AORs, issue a PERFORM CORBASERVER(COR2) SCAN

command. The AOR scans COR2’s pickup directory, installs the new definition

of DJAR3.jar, and copies the new versions of bean5 and bean6 to COR2’s

shelf directory.

or, on each of the AORs:

a. Issue an EXEC CICS or CEMT DISCARD DJAR(DJAR3) command, to

remove the current definition of DJAR3.jar from CICS.

b. Issue a CEDA INSTALL DJAR(DJAR3) or an EXEC CICS CREATE

DJAR(DJAR3) CORBASERVER(COR2)

HFSFILE(new_version_of_DJAR3.jar_on_HFS) command. CICS installs the

new definition of DJAR3.jar, and copies the new versions of bean5 and bean6

to COR2’s shelf directory.

Note:

a. It is not necessary to re-publish the updated versions of bean5 and

bean6 to the namespace, even if the home or component interfaces

of the beans have changed since the previous version.

b. If the home or component interface of bean5 or bean6 has changed

since the previous version, before using the changed bean client

applications must be updated to use the new signature.

c. If you update a stateful session bean, depending on exactly what

changes are made you may change the structure of its serialised

state. If this happens, you will invalidate any passivated instances of

the bean in the object store. If this happens, any attempts to use the

now invalidated bean will result in an exception. You should code

your client applications to cope with this possibility.

4. On each of the AORs, issue a CEMT SET CORBASERVER(COR2) ENABLED

command. From this moment, all new work will use the updated versions of

bean5 and bean6.

Solution 2

This solution requires CICSPlex System Manager. It is a development of solution 2

for a single-region. Its advantage is that it is relatively seamless—that is, there

should at worst be only a tiny period during which it is impossible to create a new

instance of bean5 or bean6. Its disadvantage is that it is more complicated to

implement than solution 1.

1. Using CICSPlex SM:

a. Create clones of all your AORs.

b. Direct all new workload to the clones—that is, quiesce the original AORs

and activate the clones. For information on how to do this, see the

CICSPlex System Manager Managing Workloads manual.

Each request for a bean method that will run under a new OTS transaction,

or under no OTS transaction, whether in COR1 or COR2, is routed to one or

other of the clones.

Chapter 22. Updating enterprise beans in a production region 303

Each request for a bean method that will run under an existing OTS

transaction (whether in COR1 or COR2) is routed to the appropriate original

AOR.

Note:

1) By “a new OTS transaction” we mean an OTS transaction in

which the bean’s participation begins after all new work is

directed to the clones.

2) By “an existing OTS transaction” we mean an OTS transaction in

which the bean’s participation began before all new work was

directed to the clones.

3) By “the appropriate original AOR” we mean the original AOR

containing the request processor for the OTS transaction.

2. On each of the original AORs:

Check when all instances of bean1 through bean6 have been destroyed or

passivated:

a. If you don’t already know the CICS transaction ID or IDs associated with

bean1 through bean6, use the CREC transaction to display this information.

b. Use the INQUIRE TASK command to check whether any instances of these

transactions are running.

3. When all instances of bean1 through bean6, on all the original AORs, have been

destroyed or passivated, install the updated version of the DJAR3.jar deployed

JAR file, using either the CICS scanning mechanism or static DJAR definitions.

(You cannot use the scanning mechanism to update static DJAR definitions.)

Either:

a. Put the new version of the DJAR3.jar deployed JAR file into COR2’s pickup

directory (which is shared by all the original AORs).

b. On each of the original AORs, issue a PERFORM CORBASERVER(COR2)

SCAN command. The AOR scans COR2’s pickup directory, updates its

definition of DJAR3.jar, and copies the new versions of bean5 and bean6 to

COR2’s shelf directory.

or:

a. On each of the original AORs, issue a CEMT DISCARD DJAR(DJAR3)

command to delete the old definition of DJAR3.jar.

b. On each of the original AORs, issue a CEDA INSTALL DJAR(DJAR3) or an

EXEC CICS CREATE DJAR(DJAR3) CORBASERVER (COR2)

HFSFILE(new_version_of_DJAR3.jar_on_HFS) command. CICS installs the

new definition of DJAR3.jar, and copies the new versions of bean5 and bean6

to COR2’s shelf directory.

Note:

a. It is not necessary to re-publish the updated versions of bean5 and

bean6 to the namespace, even if the home or component interfaces

of the beans have changed since the previous version.

b. If the home or component interface of bean5 or bean6 has changed

since the previous version, before using the changed bean client

applications must be updated to use the new signature.

c. If you update a stateful session bean, depending on exactly what

changes are made you may change the structure of its serialised

state. If this happens, you will invalidate any passivated instances of

the bean in the object store. If this happens, any attempts to use the

304 Java Applications in CICS

now invalidated bean will result in an exception. You should code

your client applications to cope with this possibility.

4. Using CICSPlex SM, direct all new workload to the original AORs—that is,

quiesce the clones and activate the original AORs.

All requests for bean methods that will run under a new OTS transaction, or

under no OTS transaction, whether in COR1 or COR2, are now routed to the

original AORs. From this moment, all new work will use the updated versions of

bean5 and bean6. Requests for bean methods that will run under an existing

OTS transaction (whether in COR1 or COR2) continue to be routed to the clones.

Note:

a. By “a new OTS transaction” we mean an OTS transaction in which

the bean’s participation begins after all new work is redirected to the

original AORs.

b. By “an existing OTS transaction” we mean an OTS transaction in

which the bean’s participation began before all new work was

redirected to the original AORs.

Eventually, all instances of enterprise beans on the clones will be destroyed or

passivated.

5. On each of the clones, use the INQUIRE TASK command to check when all

instances of bean1 through bean6 have been destroyed or passivated. When this

has happened, you can discard the clone.

Other possible solutions

The solutions described in “Solutions for a single listener/AOR” on page 298 and

“Solutions for a multi-region EJB server” on page 302 are not the only possibilities.

Another approach, for example, is to:

1. Use non-default TRANIDs for the request processors associated with the beans

to be updated. (In other words, segregate your enterprise beans by

CorbaServer and transaction ID in the way previously suggested.)

2. Disable the request processor transactions, or put the transactions into a

transaction class and reduce the TCLASS limit to zero.

3. When all instances of the beans have been destroyed or passivated, install the

updated versions of the deployed JAR files in one of the ways described for the

other solutions.

Chapter 22. Updating enterprise beans in a production region 305

306 Java Applications in CICS

Chapter 23. The CCI Connector for CICS TS

This chapter describes the CCI Connector for CICS TS. It covers the following

topics:

v “Overview of the CCI Connector for CICS TS”

v “Using the CCI Connector for CICS TS” on page 312

v “Data conversion and the CCI Connector for CICS TS” on page 315

v “Installing the CCI Connector for CICS TS” on page 315

v “Using the sample utility programs to manage and acquire a connection factory”

on page 316

v “The CCI Connector sample application” on page 319

v “Problem determination” on page 322

v “Migrating from the CICS Connector for CICS TS to the CCI Connector for CICS

TS” on page 322

Overview of the CCI Connector for CICS TS

The CCI Connector for CICS TS helps you to build Enterprise JavaBean (EJB)

server components that make use of existing CICS programs.

The background—connectors

Frequently, new Java applications can be developed more quickly and reliably by

harnessing the power of existing (non-Java) CICS programs. A CICS connector is

a software component that allows a Java client application to invoke a CICS

application. Typically, the Java client programs that use a CICS connector are

servlets.

For several releases, CICS has supported CICS connectors that enable a Java

client program, running outside CICS (on, for example, Windows, UNIX, or native

z/OS), to connect to a specified program on a CICS server. The CCI Connector for

CICS TS enables a Java program or enterprise bean running on CICS Transaction

Server for z/OS to link to a CICS server program.

The CCI Connector for CICS TS implements the industry-standard Common Client

Interface (CCI) defined by the J2EE Connector Architecture Specification, Version

1.0.

Note: The CICS Connector for CICS TS, introduced in CICS TS for z/OS, Version

2.1, is no longer supported. Unlike the CCI Connector for CICS TS, the

CICS Connector for CICS TS implemented a non-standard, IBM-proprietory,

client interface. For advice on upgrading existing applications that use the

CICS Connector for CICS TS to use the CCI Connector for CICS TS instead,

see “Migrating from the CICS Connector for CICS TS to the CCI Connector

for CICS TS” on page 322.

The Common Client Interface

This section presents an overview of the Common Client Interface. For definitive

information about the interface, see the J2EE Connector Architecture Specification,

Version 1.0, which you obtain from java.sun.com/j2ee/download.dital.

The Common Client Interface (CCI) is part of the J2EE Connector architecture. The

CCI provides a standard interface that allows developers to communicate with any

number of Enterprise Information Systems (EISs) through their specific resource

© Copyright IBM Corp. 1999, 2006 307

|
|
|
|
|
|
|

adapters, using a generic programming style. The CCI is closely modeled on the

client interface used by Java Database Connectivity (JDBC), and is similar in its use

of Connections and Interactions.

Within the CCI, there are two distinct types of class: for convenience, we shall call

them framework classes and input/output classes.

Framework classes

Framework classes are used to request a connection to an EIS such as CICS, and

execute commands on the EIS, passing input and retrieving output. The framework

classes are:

ConnectionFactory

A ConnectionFactory object is used to manufacture connections that a

Java component can use to communicate with a specific EIS. Attributes of

the ConnectionFactory specify the EIS for which connections can be

created. A ConnectionFactory is the factory for a Connection object.

Connection

A Connection object identifies a unique connection to a specific server. It is

the factory for an Interaction object.

Interaction

The execute method of an Interaction object allows you to drive an

interaction with a server. In CICS TS, the execute method takes three

arguments—an InteractionSpec object that specifies the type of

interaction, and two Record objects that carry the input and output data.

J2EE components use the framework classes to acquire a connection to an EIS

and to send and receive data. First, a J2EE component obtains a

ConnectionFactory object for the particular EIS that is to be accessed—for

example, CICS. (The component may manufacture the ConnectionFactory

programatically or, more likely, look it up in a JNDI namespace.) It uses the

ConnectionFactory to get a Connection object. Then it uses the Connection

object to create one or more Interaction objects. It executes commands on the EIS

through these Interaction objects.

Figure 30 shows the CCI framework classes being used to connect to an EIS and

execute a command.

Input/output classes

Using the framework classes gives a generic way of accessing an EIS by means of

a J2EE resource adapter. However, because every EIS has different input and

output needs, the CCI interfaces provide a way for J2EE components to pass

EIS-specific information to a J2EE resource adapter. The following types of object

are used for this purpose by a J2EE component:

v ConnectionSpec objects

v InteractionSpec objects

v Record objects

ConnectionFactory cf = <Lookup from JNDI namespace>

Connection conn = cf.getConnection();

Interaction int = conn.createInteraction();

int.execute(<Input output data>);

int.close();

conn.close();

Figure 30. Using the CCI framework classes to connect to an EIS and execute a command

308 Java Applications in CICS

ConnectionSpec

A ConnectionSpec object can be used to specify security attributes (such

as userid and password) used in an interaction with a server.

Note: CICS ignores any security settings specified in a ConnectionSpec

object, because it has already established a suitable security context

for the connector.

The CCI Connector for CICS TS’s ConnectionSpec class is called

ECIConnectionSpec.

InteractionSpec

An InteractionSpec object holds essential attributes necessary for an

interaction with a server—for example, the name of the target program. It is

passed as a required argument on an Interaction.execute() method call

when a particular interaction is to be carried out.

 The CCI Connector for CICS TS’s InteractionSpec class is called

ECIInteractionSpec.

Record

Record objects are beans that hold the data exchanged with the target

program—you can think of them as the equivalent of CICS communication

areas (COMMAREAs). The data is accessible through Record-defined

interfaces.

Figure 31 shows the CCI framework classes and input/output classes being used

together to connect to an EIS, pass EIS-specific input/output parameters, and

execute a command.

The CCI Connector for CICS TS

The CICS Transaction Gateway includes an External Call Interface (ECI) resource

adapter for CICS. The ECI resource adapter provides standard CCI interfaces that

enable J2EE components to call CICS server programs, using data areas

(COMMAREAs) to pass information to and from the server. Typically, these J2EE

components are servlets or enterprise beans; in all cases, they execute outside

CICS.

CICS TS includes the CCI Connector for CICS TS, which provides standard CCI

interfaces that enable Java programs and components (for example, enterprise

beans) running within CICS to call CICS server programs.

ConnectionFactory cf = <Lookup from JNDI namespace>

ECIConnectionSpec cs = new ECIConnectionSpec();

cs.setXXX(); //Set any connection specific properties

Connection conn = cf.getConnection(cs);

Interaction int = conn.createInteraction();

ECIInteractionSpec is = new ECIInteractionSpec();

is.setXXX(); //Set any interaction specific properties

RecordImpl in = new RecordImpl();

RecordImpl out = new RecordImpl();

int.execute(is,in,out);

int.close();

conn.close();

Figure 31. Complete CCI interaction with an EIS

Chapter 23. The CCI Connector for CICS TS 309

A Java program or enterprise bean running on CICS TS can use the CCI Connector

for CICS TS to link to a suitable CICS server program. The CICS server program:

v May be written in any of the CICS-supported languages

v Must use a suitable communications area (COMMAREA)

v Must not do any terminal input/output

v Typically, runs on a separate back-end CICS Transaction Server for z/OS region,

but optionally may be on the same CICS region as the Java program or bean.

The connector uses a JCICS Program.link() call to access the back-end server

program. Link and distributed program link (DPL) calls are supported. This scenario

is shown in Figure 32. In this example, a Java client application or servlet uses

RMI-IIOP to create an instance of an enterprise bean in a CICS EJB server. The

enterprise bean uses the CCI Connector for CICS TS to link to a server program on

a back-end CICS Transaction Server for z/OS region.

To create an enterprise bean that uses the CCI Connector for CICS TS, the Java

programmer requires a reasonable knowledge of CICS (although somewhat less

than if he or she were using JCICS). However, the enterprise beans that are

created can be used by Java programmers who have little knowledge of CICS.

The CCI Connector for CICS TS is highly optimized for execution within CICS; there

is very little overhead involved in using it rather than a JCICS Program.link() call.

Benefits of the CCI Connector for CICS TS

1. The CCI Connector for CICS TS helps you to build powerful server components

that make use of existing CICS programs.

2. CICS enterprise beans that use the connector:

v Enable programmers of Java client applications, who typically have little or no

knowledge of CICS, to add the power of CICS to their applications.

Web Server

Java
servlet

z/OSz/OS

DPL

EJB container

Enterprise bean
instance

JCICS
Program.link()

Back-end
CICS
server
region

CCI
connector i/f

RMI-IIOP
calls to

enterprise
bean

Workstation

Java
client
app.

Web Server

Servlet

CICS Transaction Server for z/OS

Figure 32. A CICS enterprise bean uses the CCI Connector for CICS TS to connect to a CICS server program.

A Java client application or servlet uses RMI-IIOP to create an instance of an enterprise bean, which exists in a CICS

EJB container. The enterprise bean uses the CCI Connector for CICS TS to link to a server program on a back-end

CICS TS for z/OS region.

310 Java Applications in CICS

v Can be called by Java client applications and servlets running on many

platforms. The client code used to call the bean (and through it the CICS

server program) is identical on all Java platforms. Thus, for example, the

client could be an enterprise bean running on WebSphere, a servlet running

on a Web server, or a standalone application on a workstation.

v If written correctly, should be portable, with little or no modification, between

all EJB servers that support the Common Client Interface.

3. Because the Common Client Interface is a non-proprietary standard, the CCI

code that calls the server program should be portable, with little or no

modification, to and from most Java-enabled platforms.

4. Because the CCI Connector for CICS TS runs inside CICS, no network flows

are required between the connector and CICS. Thus, the connector’s

performance is better than that of CCI connectors that use the ECI resource

adapter to access CICS programs from outside CICS.

5. Using the connector from a CICS session bean results in a simple, two-tier

deployment model: Client → CICS TS.

6. Programs written to use the ECI resource adapter can be easily adapted to use

the CCI Connector for CICS TS. Thus, client programs that previously accessed

CICS server programs from outside CICS can be migrated to run inside CICS.

Note: If you port a program written to use the ECI resource adapter to use the

CCI Connector for CICS TS, you must recompile the program to use the

CICS TS-supplied classes in the dfjcci.jar JAR file, rather than the

CICS Transaction Gateway classes.

7. The CCI Connector for CICS TS supports the Java 2 security policy

mechanism.

Sample applications

CICS supplies two sample applications that illustrate how a CICS Java program or

enterprise bean can use the CCI Connector for CICS TS to call a CICS server

program:

1. The CCI Connector sample. This is a relatively simple application that shows

how to code the CCI APIs directly.

The CCI Connector sample illustrates how to:

a. Look up a previously-published connection factory in a JNDI namespace

b. Use the CCI Connector for CICS TS to call a CICS server program

The CCI Connector sample is described in “The CCI Connector sample

application” on page 319.

2. The EJB Bank Account sample. This is a more complex sample that illustrates

how you can use enterprise beans and DB2 to make CICS-controlled

information available to Web users. The sample implements a CICS enterprise

bean that uses the CCI Connector for CICS TS to link to back-end CICS

COBOL programs. The COBOL programs extract information from DB2 data

tables.

The EJB Bank Account sample is described in “The EJB Bank Account sample

application” on page 261.

CICS also supplies two sample utility programs that show you how to:

1. Publish a connection factory to a JNDI namespace (the

CICSConnectionFactoryPublish sample). This is described in “Publishing a

connection factory using CICSConnectionFactoryPublish” on page 317.

Chapter 23. The CCI Connector for CICS TS 311

2. Retract a previously-published connection factory from the JNDI namespace

(the CICSConnectionFactoryRetract sample). This is described in “Retracting a

connection factory using CICSConnectionFactoryRetract” on page 318.

Using the CCI Connector for CICS TS

CICS Java components that use the CCI Connector for CICS TS can be

programmed in two ways. You can:

1. Program directly to the connector’s implementation of the Common Client

Interface. This approach produces the best performance.

2. Use a rapid application development (RAD) tool that provides visual interfaces

and high-level constructs for programming the connector’s Common Client

Interface.

Whichever method you choose, you need to understand how to use the CCI

Connector for CICS TS from a Java component running in CICS TS.

The logic a CICS enterprise bean should use to link to a back-end CICS program is

shown in Figure 31 on page 309. That is:

 1. Use the CICS-supplied sample program, CICSConnectionFactoryPublish, to

publish a ConnectionFactory object suitable for use with the CCI Connector

for CICS TS to the JNDI namespace used by the local CICS region. (See

“Using the sample utility programs to manage and acquire a connection

factory” on page 316.)

 2. Declare a ConnectionFactory object, and set it to the CICS connection

factory by means of a JNDI lookup.

 3. Create an ECIConnectionSpec object. Set its properties as necessary.

Note: This step is included for completeness. However, any userid or

password specified in the ECIConnectionSpec object is ignored by

CICS.

 4. Use the ConnectionFactory to create a Connection object. This object

represents a single connection to CICS.

 5. Create an Interaction object from the Connection object.

 6. Create an ECIInteractionSpec object. Set its properties, including the name of

the target program and the mode—synchronous or asynchronous—of the

interaction. (For CICS TS, only synchronous mode is supported.)

 7. Create two Record objects, to represent the input and output communications

areas of the target program.

 8. Run the execute method of the Interaction object, passing the

ECIInteractionSpec, and the input and output Record objects, as arguments.

 9. Retrieve the data returned by the target program from the output Record

object.

10. Execute the close method of the Interaction object.

11. Execute the close method of the Connection object.

Note: To specify the CICS server region which owns the program to be linked to,

use the local PROGRAM definition of the server program. The PROGRAM

definition should specify the location of the server program (local or remote)

and, if it’s remote, whether or not dynamic routing should occur.

312 Java Applications in CICS

Important: We recommend that you get the Javadoc for the CCI Connector

architecture API from the Sun Web site. This will help you code your

CCI applications. It also provides information such as the exceptions

used by CCI implementations. Javadoc for the CICS-specific

ECIConnectionSpec and ECIInteractionSpec classes is in the CCI

Connector for CICS TS: Class Reference, in the CICS Information

Center.

Which classes to use?

Which classes should you use, the standard CCI classes in the javax.resource.cci

package or the CICS-specific classes provided by the CCI Connector for CICS TS

in the com.ibm.connector2.cics package?

Framework classes

The CCI Connector for CICS TS provides implementations of the framework

classes called ECIConnectionFactory, ECIConnection, and ECIInteraction.

However, the standard ConnectionFactory, Connection, and Interaction classes

should be used, rather than the CICS-specific implementations. For guidance

information about programming these classes, see the CICS Transaction Gateway:

Programming Guide. For reference information, see the Sun Javadoc generated

from the ConnectionFactory, Connection, and Interaction classes’ source code.

Note that not all the information in the CICS Transaction Gateway: Programming

Guide is applicable to the CCI Connector for CICS TS. The following properties of

the ConnectionFactory class (and of the CICS-supplied

ECIManagedConnectionFactory class) are ignored by CICS TS:

v clientSecurity

v connectionURL (in CICS TS, this is always local:)

v password

v portNumber

v serverName

v serverSecurity

v userName

Specifying a value for any of the above properties has no effect.

Input/output classes

The CCI Connector for CICS TS provides implementations of the input/output

classes. Use these CICS-specific classes (ECIConnectionSpec and

ECIInteractionSpec) rather than the standard ConnectionSpec and

InteractionSpec classes.

For guidance information about programming the CICS-specific classes, see the

CICS Transaction Gateway: Programming Guide. For reference information, see the

CICS Javadoc generated from the ECIConnectionSpec and ECIInteractionSpec

classes in the CCI Connector for CICS TS: Class Reference. Special considerations

that apply to the CCI Connector for CICS TS are listed below.

Note: Specifying a property or value described as “not supported by CICS TS”

results in an exception. Specifying a property or value described as “ignored

by CICS TS” has no effect.

Chapter 23. The CCI Connector for CICS TS 313

ECIConnectionSpec

This class allows the J2EE component to pass security credentials different

from those defined for the connection factory. Properties include:

Password

The password for the userid specified in UserName. Ignored by CICS TS.

UserName

The userid to be used to access CICS. Ignored by CICS TS.

ECIInteractionSpec

This class holds all the interaction-relevant attributes (for example, the name of

the target program and the mode of the interaction—synchronous or

asynchronous) necessary for an interaction with CICS. It is a required

parameter on each Interaction.execute() method call. Its properties are:

InteractionVerb

The mode of the call to CICS—synchronous or asynchronous. The CCI

Connector for CICS TS supports only the following:

SYNC_SEND_RECEIVE

A synchronous call. This is used to link to a CICS program.

FunctionName

The name of the program to execute on CICS. The CCI Connector for CICS

TS requires you to specify FunctionName.

Note: FunctionName can refer to either a local or a remote program. The

PROGRAM definition in the local region should specify the location

of the server program (local or remote) and, if it’s remote, whether or

not dynamic routing should occur.

ExecuteTimeout

The timeout value for interactions with CICS.

0 No timeout. This is the default value, and the only value supported

by CICS TS.

A positive integer

The length of time in milliseconds. Ignored by CICS TS.

CommareaLength

The length of the communications area (COMMAREA) being passed to

CICS inside your input record. If this is not supplied, the default used by the

CCI Connector for CICS TS is the length of the input record data.

ReplyLength

The amount of data you want back from CICS. Where only a small amount

of a large returned COMMAREA is required by your enterprise bean or

Java component, you can use this setting to cut down on network

bandwidth. If not supplied, the default is to receive all data in the

COMMAREA.

Note: You are recommended not to set ReplyLength. Because the CCI

Connector for CICS TS always runs in local mode—that is, the

enterprise bean or Java component that calls the connector executes

on the same CICS region as the connector itself—there is no

network flow to consider and therefore no need to receive less than

the whole reply.

Record

For input and output, the CCI Connector for CICS TS supports only Record

314 Java Applications in CICS

classes that implement the javax.resource.cci.Streamable interface. This

allows the connector to read and write the streams of bytes that make up CICS

COMMAREAs directly to and from the Record objects supplied to the

execute() method of ECIInteraction.

 For further information about using the javax.resource.cci.Streamable

interface to build input records and retrieve byte arrays from output records, see

the CICS Transaction Gateway: Programming Guide.

Data conversion and the CCI Connector for CICS TS

To represent text data, Java programs always use the Unicode character set, while

CICS TS programs use EBCDIC. When a Java program or enterprise bean calls a

CICS TS server program, any text values in the communications area of the server

program must be converted from Unicode to EBCDIC on input, and from EBCDIC

to Unicode on output. However, the CCI Connector for CICS TS handles this data

conversion automatically. When converting to and from Unicode, the JCICS

Program.link() call issued by the connector uses, as the alternative coding system,

the coding system of the execution environment; because the connector runs on

z/OS, the alternative coding system is EBCDIC.

Note: By default, the Record objects passed to the connector’s

Interaction.execute() method use the EBCDIC code page used by the

connector’s execution environment.

Installing the CCI Connector for CICS TS

Requirements for the CCI Connector for CICS TS

The hardware and software requirements for the CCI Connector for CICS TS are

the same as for CICS Transaction Server generally.

Compiling CCI applications

To compile an application that uses the CCI Connector for CICS TS, you must

include the following CICS-supplied JAR files in your Java classpath:

connector.jar

The CCI APIs, required by all CCI applications

dfjcci.jar

The CICS TS implementations of the CCI APIs

When you install CICS, connector.jar is installed into the %JAVA_HOME%/standard/
jca HFS directory (where %JAVA_HOME% is the value of the JAVADIR parameter

on the DFHISTAR CICS installation job); dfjcci.jar is installed into the

/usr/lpp/cicsts/cicsts31/lib directory (where cicsts31 is the value of the

USSDIR parameter on the DFHISTAR installation job).

Running CCI applications on CICS TS

You shouldn’t need to take any special steps to set up CICS to support applications

that use the CCI Connector for CICS TS.

Chapter 23. The CCI Connector for CICS TS 315

Using the sample utility programs to manage and acquire a connection

factory

CICS supplies three sample programs that illustrate how to:

1. Publish a connection factory to a JNDI namespace (the

CICSConnectionFactoryPublish sample). You can use the sample to create a

ConnectionFactory object suitable for use with the CCI Connector for CICS

TS, and to publish it to the JNDI namespace used by the local CICS region. An

enterprise bean or Java program, running on CICS, can then perform a JNDI

lookup to obtain a reference to the connection factory.

This sample is described in “Publishing a connection factory using

CICSConnectionFactoryPublish” on page 317.

2. Retract a previously-published connection factory from the JNDI namespace

(the CICSConnectionFactoryRetract sample). This sample is described in

“Retracting a connection factory using CICSConnectionFactoryRetract” on page

318.

3. Look up a connection factory in the JNDI namespace (the CCI Connector

sample application). This sample also shows you how to use the CCI Connector

for CICS TS to call a CICS server program. It is described in “The CCI

Connector sample application” on page 319.

Using the CICSConnectionFactoryPublish and CICSConnectionFactoryRetract

samples, you can create, publish, and manage a connection factory separately from

the applications that use it.

To use the sample programs, you need a suitably configured name server. If you

need to configure a name server, see “Enabling JNDI references” on page 169 and

“Specifying the location of the JNDI name server” on page 169.

Installing the publish and retract sample programs

This section describes how to install the CICSConnectionFactoryPublish and

CICSConnectionFactoryRetract programs. How to install the CCI Connector

application is described in “Installing the CCI Connector sample” on page 320.

The CICS-supplied JAR file CICSCCISamples.jar contains the object (.class) files for

the sample programs. CICS installs CICSCCISamples.jar into the

/usr/lpp/cicsts/cicsts31/samples/cci directory (where cicsts31 is the value of

the CICS_DIRECTORY variable used by the DFHIJVMJ job during CICS

installation). Also installed into the /usr/lpp/cicsts/cicsts31/samples/cci directory

are the source (.java) files of the programs.

To install the CICSConnectionFactoryPublish and CICSConnectionFactoryRetract

programs:

1. Add the JAR file containing the programs, /usr/lpp/cicsts/cicsts31/samples/
cci/CICSCCISamples.jar, to the CLASSPATH statement in the JVM profile that

the programs will use. As supplied, the sample programs use the CICS-supplied

sample JVM profile DFHJVMPR, which is the default if no JVM profile is

specified in the program’s resource definition. CICS installs DFHJVMPR into the

/usr/lpp/cicsts/cicsts31/JVMProfiles directory (where cicsts31 is the value

of the CICS_DIRECTORY variable used by the DFHIJVMJ job during CICS

installation).

316 Java Applications in CICS

2. Place your edited version of DFHJVMPR in the HFS directory specified on the

JVMPROFILEDIR system initialization parameter. (In a default CICS installation,

JVMPROFILEDIR specifies /usr/lpp/cicsts/cicsts31/JVMProfiles.)

3. Use CEDA to install transactions CCPB and CCRT from group DFH$CCI.

4. Use CEDA to install programs DFJ$CCPB and DFJ$CCRT from group

DFH$CCI.

Note: If your CICS region uses program autoinstall, this last step is not

required.

Publishing a connection factory using CICSConnectionFactoryPublish

The CICSConnectionFactoryPublish program:

1. Gets the initial JNDI context of the CICS region.

2. Checks to see if a ConnectionFactory subContext exists in the context

structure.

3. If the ConnectionFactory subContext does not exist, creates it.

4. If the ConnectionFactory/CICSConnectionFactory connection factory has not

already been published (bound) to the name server, publishes it.

The default name of the connection factory, as set by the supplied version of the

CICSConnectionFactoryPublish program, is CICSConnectionFactory. The default

name of the JNDI subContext in which the connection factory is published is

ConnectionFactory. By editing the source code of the

CICSConnectionFactoryPublish program, you can change:

v The name of the connection factory.

v The JNDI subContext.

v If the linked-to server program is remote, the name of the mirror transaction

under which the program runs on the remote region. However, the recommended

way to specify the mirror program is on the local PROGRAM definition of the

server program.

For instructions on how to make the changes, see the comments in the source

code.

If you change the name of the connection factory, or of the subContext, remember

to make the same change in all three of the sample programs.

Running the program

To publish (bind) a ConnectionFactory suitable for use with the CCI Connector for

CICS TS to the CICS JNDI name server, run transaction CCPB. Unless you have

changed the CICSConnectionFactoryPublish program, the ConnectionFactory will

be named CICSConnectionFactory, and will be published to subContext

ConnectionFactory in the JNDI server’s name space.

The following message appears on your screen:

ccpb - ConnectionFactory published to JNDI successfully.

Note: If a ConnectionFactory with the same name and subContext has already

been published to the JNDI server (and not retracted), a different message

appears:

ccpb - The ConnectionFactory is already published to JNDI.

Chapter 23. The CCI Connector for CICS TS 317

Assuming that the connection factory is published successfully, the following output

is sent to stdout:

It is not recommended that you run CICSConnectionFactoryPublish as a PLTPI

program, or link to it from a PLTPI program. This is because, if a JVM is not

available, CICS startup time will be lengthened.

Looking up a connection factory

To look up a previously-published connection factory in the JNDI namespace used

by CICS, use code such as the following:

// Declare a ConnectionFactory object

ConnectionFactory cf = null;

try{

 // Get the initial JNDI context

 javax.naming.Context ic = new javax.naming.InitialContext();

 // Do the lookup, casting the returned CICSConnectionFactory to type

 // ConnectionFactory

 cf = (ConnectionFactory)ic.lookup("ConnectionFactory/CICSConnectionFactory");

 // Use the connection factory to create a connection to CICS

 Connection eciConn = (Connection)cf.getConnection();

}

catch (Exception e){

 // Lookup failed, or specified connection factory has not been published

 // Exception processing

}

This is illustrated in the CCI Connector application—see “The CCI Connector

sample application” on page 319.

Retracting a connection factory using CICSConnectionFactoryRetract

To retract (unbind) a connection factory that you have published, run transaction

CCRT. Unless you have changed the CICSConnectionFactoryRetract program, the

ConnectionFactory to be retracted will be CICSConnectionFactory, in subContext

ConnectionFactory in the JNDI server’s name space.

The following message appears on your screen:

ccrt - ConnectionFactory retracted from JNDI successfully.

Note: If the ConnectionFactory named in the CICSConnectionFactoryRetract

program does not exist on the JNDI server (it may, for example, have

already been retracted), a different message appears:

ccrt - unable to locate ConnectionFactory on JNDI.

Assuming that the connection factory is retracted normally, the following output is

sent to stdout:

**

**** CICSConnectionFactoryPublish: Started

**** CICSConnectionFactoryPublish: Binding ConnectionFactory ConnectionFactory/CICSConnectionFactory

**** CICSConnectionFactoryPublish: ConnectionFactory bound to JNDI

**** CICSConnectionFactoryPublish: Ended

**

Figure 33. Stdout output from transaction CCPB to publish a ConnectionFactory with default name and subContext

318 Java Applications in CICS

It is not recommended that you run CICSConnectionFactoryRetract as a PLTSD

program, or link to it from a PLTSD program. This is because CICS shut down time

will be lengthened.

The CCI Connector sample application

The CCI Connector sample is a relatively simple application that shows how to

code the CCI APIs directly. It illustrates how to:

1. Look up a previously-published connection factory in a JNDI namespace

2. Use the CCI Connector for CICS TS to call a CICS server program

The sample consists of:

v A CICS Java program

v A custom Record that demonstrates the use of the

javax.resource.cci.Streamable interface

v A CICS COBOL server program

The sample works like this:

1. A user starts the application by running the CCCI transaction from a CICS

terminal.

2. The CICS Java program, CICSCCISample (DFJ$CCIC), is started. The Java

program:

a. Asks the user to input a sequence of random, unsorted, decimal numbers

b. Does a JNDI lookup of the name server, to obtain a CICS connection factory

c. If a connection factory has not been published to the name server, creates

one programatically

d. Uses the connection factory to create a connection to CICS

e. Creates an Interaction object from the Connection object, and sets the

properties of the interaction (including the name of the target program) by

means of an ECIInteractionSpec object

f. Uses the Interaction.execute method to link to the COBOL program,

DFH$0CCIS, passing as input (in a custom Record object) the user’s

sequence of unsorted numbers, plus the ECIInteractionSpec object

3. The COBOL program sorts the numbers into ascending order and returns the

sorted sequence in its output COMMAREA.

4. The Java program retrieves the COBOL program’s output from the output

Record object and displays the sorted list on the user’s terminal.

Figure 35 on page 320 shows the components of the sample application.

**** CICSConnectionFactoryRetract: Started

**** CICSConnectionFactoryRetract: Unbinding ConnectionFactory/CICSConnectionFactory

**** CICSConnectionFactoryRetract: ConnectionFactory/CICSConnectionFactory unbound

**** CICSConnectionFactoryRetract: Ended

Figure 34. Stdout output from transaction CCRT to retract a connection factory with default name and subContext

Chapter 23. The CCI Connector for CICS TS 319

Requirements for the CCI Connector sample

To enable the CCI Connector sample to obtain a CICS connection factory by

performing a JNDI lookup, you need a name server that supports the Java Naming

and Directory Interface (JNDI), Version 1.2 or later. The way to set one up is

described in “Actions required on z/OS or Windows NT” on page 230. You can use

either a COS Naming Server or an LDAP server.

However, if the sample cannot connect to the name server, or a CICS connection

factory has not been published to the name server, the sample creates the

connection factory programatically. Therefore, strictly speaking, a name server is not

a requirement to run the sample.

Installing the CCI Connector sample

1. If you have not already done so when running the

CICSConnectionFactoryPublish and CICSConnectionFactoryRetract samples,

add the JAR file containing the sample programs, /usr/lpp/cicsts/cicsts31/

CCI connector
for CICS TS

CICS COBOL
program

CICS

z/OS

Name server

JNDI

CICS Java
program

Figure 35. Overview of the CCI Connector sample application. The main elements of the

sample are a CICS Java program and a CICS COBOL server program. The Java program

uses the CCI Connector for CICS TS to link to the COBOL server program. The CICS

connection factory can be published to either a COS Naming Server or an LDAP name

server.

320 Java Applications in CICS

samples/cci/CICSCCISamples.jar, to the CLASSPATH statement in the JVM

profile that the programs will use. As supplied, the sample programs use the

CICS-supplied sample JVM profile DFHJVMPR, which is the default if no JVM

profile is specified in the program’s resource definition. CICS installs

DFHJVMPR into the /usr/lpp/cicsts/cicsts31/JVMProfiles directory (where

cicsts31 is the value of the CICS_DIRECTORY variable used by the DFHIJVMJ

job during CICS installation).

Place your edited version of DFHJVMPR in the HFS directory specified on the

JVMPROFILEDIR system initialization parameter. (In a default CICS installation,

JVMPROFILEDIR specifies /usr/lpp/cicsts/cicsts31/JVMProfiles.)

2. Ensure that the connector.jar and dfjcci.jar files are in the “trusted

middleware” classpath used by the JVM.

Note: When you install CICS, connector.jar is installed into the

%JAVA_HOME%/standard/jca directory and dfjcci.jar is installed into the

/usr/lpp/cicsts/cicsts31/lib directory, as described in “Compiling CCI

applications” on page 315. These directories are in the default trusted

middleware classpath. Thus, assuming that your trusted middleware

classpath is the same as, or based on, the default path, you shouldn’t

need to do anything.

3. Ensure that the name server is running.

4. Use the CICSConnectionFactoryPublish program to create a ConnectionFactory

object for use by the CCI Connector for CICS TS, and to publish it to the name

server. See “Publishing a connection factory using

CICSConnectionFactoryPublish” on page 317.

5. Use CEDA to install transaction CCCI from group DFH$CCI.

6. Use CEDA to install definitions of the CICS Java and COBOL programs. Install

programs DFJ$CCIC and DFH0CCIS from group DFH$CCI.

Note: If your CICS region uses program autoinstall, this step is not required.

Testing the sample

To test the CCI Connector sample:

1. Start transaction CCCI at a CICS terminal.

2. The sample asks you to input some numbers. Enter at least five decimal

numbers, separated by spaces, and press the Return key. (Each number should

be of five digits or less, and the numbers should not be ordered by size.)

3. The sample writes the sorted list of numbers to your screen and to stdout. If,

for example, you entered the numbers 54, 3, 77, 55, and 19, your screen would

look like this:

CCCI - CCI sample transaction starting.

A Connection object has been instantiated.

An Interaction object has been instantiated.

Enter a series of numbers: 54 3 77 55 19

An InteractionSpec object has been instantiated.

Connecting to program DFH0CCIS by invoking execute() on Interaction object.

Commarea sent: 54 3 77 55 19*

Chapter 23. The CCI Connector for CICS TS 321

Commarea returned: 3 19 54 55 77*

CCCI - CCI sample transaction finished.

Problem determination

CCI Connector for CICS TS messages

CICS messages related to the CCI Connector for CICS TS are described in the

CICS Messages and Codes manual.

Tracing the CCI Connector for CICS TS

The CICS trace points related to the connector are in the range EJ 0600—EJ 06FF.

These are described in the CICS Trace Entries manual.

To control the output of CICS trace information from the connector, use CICS trace

control in the normal way.

Migrating from the CICS Connector for CICS TS to the CCI Connector

for CICS TS

If you have existing applications that use the CICS Connector for CICS TS, you

must upgrade them to use the CCI Connector for CICS TS instead.

Table 14 summarizes the upgrade choices for CICS Java components that use

either the CICS Connector for CICS TS or the CCI Connector for CICS TS, and

states a preferred solution for each case.

 Table 14. Suggested upgrade path for CICS Java components that use the CICS CCF or CCI connectors

Connector

used by

current

program

Connector interface used

by current program

Status in

CICS TS

3.1

Suggested upgrade strategy

CICS

Connector for

CICS TS

CICS Transaction Gateway

API (ECIRequest)

Not

supported

The CICS Transaction Gateway API is no longer

supported. Re-engineer to use the CCI Connector for

CICS TS. Program the connector either directly or by

means of a rapid application development (RAD) tool

that supports it.

CICS

Connector for

CICS TS

CCF, programmed either

directly or with VAJ

Enterprise Access Builder or

similar

Not

supported

CCF is replaced by CCI. Re-engineer to use the CCI

Connector for CICS TS, which performs better than the

CICS Connector for CICS TS and uses an

industry-standard interface. Program the connector

either directly or by means of a RAD tool that supports

it.

Note: It is possible to program the CCI Connector for

CICS TS using VAJ Enterprise Access Builder, but this

is not recommended because VAJ/EAB is no longer

supported.

CCI Connector

for CICS TS

CCI, programmed directly Supported CCI can be used indefinitely. Programming the CCI

directly gives the best performance.

CCI Connector

for CICS TS

CCI, programmed with VAJ

Enterprise Access Builder or

similar

Supported To continue using VAJ/EAB, changes must be made to

the application.

322 Java Applications in CICS

||

|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|||
|

|
|
|
|
|

||
|

Chapter 23. The CCI Connector for CICS TS 323

|

324 Java Applications in CICS

Chapter 24. Dealing with CICS enterprise bean problems

This section contains information on guidance in dealing with problems setting up

and using the CICS enterprise bean support. See the CICS Problem Determination

Guide for guidance on the more general aspects of CICS problem determination

and diagnostics.

This section includes the following topics:

v “CICS enterprise bean set-up problems”

v “Using EJB server runtime diagnostics” on page 326

v “Using EJB client runtime diagnostics” on page 328

v “Class version issues with RMI-IIOP” on page 330

v “Using EJB trace and serviceability commands” on page 331

CICS enterprise bean set-up problems

If you have difficulties setting up the CICS EJB server, the problem could be related

to your basic CICS Java set up. Try running the Java HelloWorld sample. If this

also fails it points to a problem with the set up of your JVM rather than anything

else.

Methods that require multiple request processors

If a single execution of an enterprise bean method requires more than one request

processor, your application could experience deadlock problems. (A method can be

said to “require more than one request processor” if it calls one or more other,

typically remote, methods, each of which must execute in a different request

processor.) Deadlocks can be caused by all the request processors required to

satisfy the method being forced to wait for a JVM when no more JVMs are

permitted. This can occur for two reasons:

1. In the simple case, the maximum number of JVMs allowed to exist concurrently

under CICS (MAXJVMTCBS) is smaller than the number of request processors

required to service the method request.

2. In the complex case:

v CICS is processing multiple requests simultaneously.

v All the requests are waiting for another JVM.

v All the permitted JVMs are currently in use.

Avoiding the simple case is easy; avoiding the complex case is more difficult. It is

necessary to ensure there are always enough free JVMs to allow at least one

method’s requirement of request processor instances to be satisfied.

The maximum number of concurrent JVMs available to a bean method is set by the

MAXACTIVE attribute of the TRANCLASS definition for the request processor

transaction. The maximum number of concurrent JVMs available to CICS is set by

the MAXJVMTCBS system initialization parameter.

To remove the possibility of deadlocks caused by bean methods that use multiple

request processors:

1. Wherever it is consistent with your applications’ requirements, try to minimize

the number of request processors each method requires, preferably to one. If

© Copyright IBM Corp. 1999, 2006 325

you can reduce the requirements of all methods, in all applications, to one

request processor, you need do no more.

2. If it is not possible to reduce the requirements of all methods to one request

processor, discover which is your “worst case”—that is, the bean method that

requires the most request processors in order to be satisfied.

3. Create a new TRANCLASS definition. This transaction class will apply to the

request processor transaction under which bean methods that require multiple

request processors will run.

4. On the TRANCLASS definition, set the value of MAXACTIVE using the following

formula:

MAXACTIVE <= ((MAXJVMTCBS - n) / (n - 1)) + 1

where n is the maximum number of request processors required by your “worst

case” method.

If the result of this calculation is a decimal value, round it down to the nearest

(lower) whole number.

5. Create new TRANSACTION and REQUESTMODEL definitions:

a. Create a new TRANSACTION definition for the request processor

transaction under which bean methods that require multiple request

processors will run. (The easiest way to do this is to copy the definition of

the default CIRP request processor transaction and modify it.) On the

TRANCLASS option, specify the name of your new transaction class.

b. Create one or more REQUESTMODEL definitions. Between them, your new

REQUESTMODEL definitions must cover all requests that may be received

for bean methods that require multiple request processors. On the TRANSID

option of the REQUESTMODEL definitions, specify the name of your new

transaction.

Using EJB server runtime diagnostics

This section includes the following topics:

v “CICS enterprise bean errors and messages”

v “JVM trace” on page 327

v “Debugging Java applications in CICS” on page 327

CICS enterprise bean errors and messages

There are a variety of places to look for error messages from CICS, the main ones

are as follows:

Enterprise Java domain (DFHEJnnnn) messages

CICS issues a large number of information, warning and error messages

from the enterprise Java domain. Most of these are routed to the CEJL and

CJRM transient data queues, others are sent to the console. See CICS

Messages and Codes for a complete listing.

CICS JVM (DFHSJnnnn) messages

These are messages issued by the CICS JVM. Most are routed to the

transient data queue CSMT. See CICS Messages and Codes for a

complete listing.

CICS Development Deployment Tool (DFHADnnnn) messages

These are messages issued by this tool and routed to CICS as SYSPRINT

messages. See CICS Messages and Codes for a complete listing.

326 Java Applications in CICS

CICS abend codes

v AJMA to AJM9 are issued by the CICS JVM

v AJ01 to AJ99 are issued by Java environment setup class Wrapper

See CICS Messages and Codes for a listing.

JVM trace

JVM trace can aid in the diagnosis of problems in the Java Virtual Machine (JVM).

Note that JVM trace can produce a large amount of output, so you should normally

activate JVM trace for special transactions, rather than turning it on globally for all

transactions.

“Controlling tracing for JVMs” on page 140 tells you about the different ways to

activate JVM tracing and change the JVM trace options. To summarize, you can

control JVM trace using:

v The CICS-supplied transaction CETR, which you can use to change the JVM

trace options, and to activate JVM tracing. You can use the CETR transaction to

define JVM tracing dynamically on the running CICS system.

v The CICS system initialization parameters JVMLEVEL0TRACE,

JVMLEVEL1TRACE, JVMLEVEL2TRACE, and JVMUSERTRACE, which you can

use to set the default JVM trace options for the CICS region, and the SPCTRSJ

and STNTRSJ system initialization parameters, which you can use to activate

JVM tracing. You can only supply these parameters at CICS startup time; you

cannot define them in the DFHSIT macro. You can use this method to define

tracing for JVMs at CICS initialization.

v The EXEC CICS INQUIRE JVMPOOL and EXEC CICS SET JVMPOOL

commands (but not their CEMT equivalents), which you can use to change the

current JVM trace options for the CICS region.

v The EXEC CICS SET TRACETYPE command, which you can use to activate

JVM tracing.

v The ibm.dg.trc.external system property in the JVM properties file that is

referenced by the JVM profile for a JVM, which you can use to set and activate

initial trace options for a particular JVM. You should only use this system property

with care.

The first two methods, using CETR and using the CICS system initialization

parameters, are most similar to the methods that you would use to define tracing for

other components.

When you set trace levels 29–32 for the SJ component and activate JVM trace,

each JVM trace point that is generated appears as an instance of CICS trace point

SJ 4D01. If the JVM trace facility fails, CICS issues the trace point SJ 4D00.

In addition to the JVM trace options, the standard trace points for the SJ (JVM)

domain, at CICS trace levels 0, 1 and 2, can be used to trace the actions that CICS

takes in setting up and managing JVMs and the shared class cache. The SJ

domain includes a level 2 trace point SJ 0224, which shows you a history of the

programs that have used each JVM. “JVM domain trace points” in CICS Trace

Entries has details of all the standard trace points in the SJ domain.

Debugging Java applications in CICS

The JVM in CICS supports the Java Platform Debugger Architecture (JPDA), which

is the standard debugging mechanism provided in the Java 2 Platform. This

Chapter 24. Dealing with CICS enterprise bean problems 327

architecture provides a set of APIs that allow the attachment of a remote debugger

to a JVM. A variety of third party debuggers are available that exploit JPDA and can

be used to attach to and debug a JVM that is running an enterprise bean, CORBA

object or CICS Java program. Typically the debugger provides a graphical user

interface that runs on a workstation and allows you to follow the application flow,

setting breakpoints and stepping through the application source code, as well as

examining the values of variables.

See “Debugging an application that is running in a CICS JVM” on page 142 for

guidance on setting up and using a debugger with the CICS JVM.

You can find information about JPDA and JPDA-compliant applications at the web

site http://java.sun.com/products/jpda/

Using EJB client runtime diagnostics

Most of the error messages issued by the client are of limited use if the problem is

actually in CICS, but you can sometimes get useful information from the client, and

it is an obvious place to start. Some of the more useful client exceptions are as

follows:

NoClassDefFoundException and ClassNotFoundException

If the client issues either of these, there is probably something missing or

corrupt on your client-side classpath. The exception should give you a good

indication of which class is missing, and from this you may be able to work

out which JAR to add to the classpath. Remember that you need j2ee.jar,

and the fully deployed jar in the classpath. It is unlikely that CICS will issue

any useful additional information for these problems.

NoClassDefFoundError:javax/ejb/HomeHandle

This indicates that a client application does not have EJB 1.1 level

classes available on the classpath. Ensure that j2ee.jar is

available.

ObjectNotFoundException

This exception can indicate that a session bean has timed out or that an

attempt has been made to use the session bean in two or more concurrent

transactions.

RemoteException

This indicates a problem in the server application and often contains a

nested exception giving more information. These include:

NoClassDefFoundError

This points to a missing JAR file on the server side. Check the

CICS system console and the JVM standard error and output files

for additional information.

CORBA.INTERNAL

This indicates a failure in the server side application outside the

JVM (for example, in a COBOL program called by an enterprise

bean). Check the CICS system console for more information.

CORBA exceptions

These exceptions can sometimes provide useful information. The completion

status can have one of three values:

328 Java Applications in CICS

v No means that the server definitely did not complete running the invoked method

successfully.

v Yes means that the invoked operation on the server did complete.

v Maybe means that the client cannot determine whether or not the operation

completed on the server.

If the completion status is Yes, you can be sure that the client found something to

run on a server (however if your JNDI/IOR is incorrect, it may not have been the

correct enterprise bean or on the expected CICS region). You will usually find some

more useful information in the CICS output about why the method call failed.

Some of the more common CORBA exceptions received by the client are:

org.omg.CORBA.COMM_FAILURE

This can occur in one of the following situations:

v The JNDI nameserver is not running (if it is on a JNDI lookup)

v The enterprise bean has not been published to the JNDI nameserver.

v The CICS region is down

v TCPIPSERVICE is not installed or is open (for method invocations on

CICS)

if either the JNDI server is not running (if it is on a JNDI lookup), if the

CICS region is down, or if your TCPIPSERVICE is not installed or open (for

method invocations on CICS). It can also occur

org.omg.CORBA.INTERNAL

This is usually caused by an abend or failure of the server-side application.

Look in the CICS console for more information.

org.omg.CORBA.INVALID_TRANSACTION

This can occur because of transaction interoperability problems between a

web application server and CICS.

 A number of protocols exist to support distributed transactions. The CICS

enterprise Java environment supports only the standard CORBA Object

Transaction Service (OTS) protocol. However, some J2EE-compliant web

application servers (such as WebSphere Version 4) either do not use this

protocol, or do not use this protocol by default. (Versions of WebSphere

Application Server from Version 5 onwards are not affected by this

problem.)

 If objects on your web application server call CICS enterprise beans within

the scope of existing transaction contexts, you must set up your web

application server to use the CORBA OTS. If this is not possible, your web

application server is not fully compatible with CICS enterprise Java support.

(For a way of using the EJB Bank Account sample application to test

whether your web application server is fully compatible with CICS enterprise

Java support, see “A note about distributed transactions” on page 275.)

 To force WebSphere Application Server to use the CORBA OTS:

1. At the WebSphere Administration Console, select the JVM settings tab.

2. Enter the following in the System Properties section:

com.ibm.ejs.jts.ControlSet.interoperabilityOnly=true

com.ibm.ejs.jts.ControlSet.nativeOnly=false

Save your changes.

3. Restart the application server.

Chapter 24. Dealing with CICS enterprise bean problems 329

|
|
|

org.omg.CORBA.OBJECT_NOT_EXIST

This can occur when a client finds a reference to a bean on the JNDI

nameserver but the bean is no longer installed in CICS.

org.omg.CORBA.UNKNOWN

There are many reasons for this exception including errors in your code,

and errors in CICS. See the CICS output for more clues about the cause of

the problem

In many instances, the CORBA exception includes a CICS specific minor code to

aid in problem determination. CICS currently uses the following minor codes:

 Table 15. CICS specific CORBA minor codes

Code CICS component detecting problem

1229111296 CICS IIOP request receiver

1229111297 Elsewhere in CICS II domain

1229111298 ORB component of CICS OT domain

1229111299 JTS component of CICS OT domain

1229111300 CSI component of CICS OT domain

1229111301 CSI component of CICS EJ domain

If the client receives a CORBA exception containing any of the CICS minor codes,

you should examine the CICS message logs for further information about the error.

Class version issues with RMI-IIOP

Remote Method Invocation over IIOP (RMI-IIOP) is the communication protocol

used, in CICS, by both enterprise beans and CORBA stateless objects. The

information in this section therefore applies to both enterprise beans and CORBA

stateless objects.

Java RMI is an object-by-value protocol. This means that whenever a Java object is

used as a parameter on a method call what actually gets sent on the wire is the

object state. The same is true of return types and exceptions. This state is a

“serialized” Java object. The state can be de-serialized by the remote JVM to create

a new copy of the original object in the remote JVM. The serialized state contains,

among other things, a version number to indicate the version of the class that the

state represents. In order for the serialized object to be de-serialized by the remote

JVM, it is necessary for the same version of the class file to be present at each end

of the IIOP connection. If the remote JVM cannot understand the object state, it will

probably cause the following exception to be thrown:

java.rmi.MarshalException:unable to read from underlying bridge

(This exception may be thrown for other reasons too.)

When you create a class in Java it is possible to provide your own customised

serialization mechanism. Using this mechanism, you can handle versioning of your

classes explicitly, rather than rely on Java’s default serialization process. Moreover,

if you provide a custom serialization mechanism you can achieve significant

performance savings over the default mechanism. If you want to take advantage of

custom serialization, your objects must implement the java.io.Externalizable

interface.

330 Java Applications in CICS

Often the objects that must be serialized are instances of classes from the standard

Java class library. These usually do not change from one version of Java to the

next, but if they do it can lead to the kind of problem described above. In order to

minimize these problems, it is recommended that you use the same version of Java

on the partner machines as CICS uses. For example, between Java 1.3.1 and Java

1.4 the java.lang.Throwable class changed significantly. This class is the

super-type of all exceptions in Java and thus many exceptions serialized by Java

1.4.1 and later cannot be de-serialized by older versions of Java.

There is a mechanism in CORBA that is used by many ORBs to get around the

problem of version changes in classes. Unfortunately, that mechanism does not fully

work in CICS because it involves affinities between the partner ORB and the JVM

in CICS. Multiple RMI-IIOP calls to the same CORBA object in CICS are likely to be

processed in different JVMs. This means that affinities are not supported and that

the mechanism for avoiding class versioning issues does not work in CICS. CICS

applications suffer from this problem only when sending serialized objects to a

remote JVM. If a remote JVM sends a serialized object to CICS, CICS can use the

standard CORBA mechanism to cope with any version incompatibilities.

If you experience this kind of problem and are unable to change the version of Java

in use at the partner platform, it is recommended that the application be changed to

use a datatype that does not cause versioning issues.

Using EJB trace and serviceability commands

You might want to trace an EJB request when you are trying to diagnose hanging or

failing requests, or when you need to be able to uniquely identify all transactions

associated with a single request in order to monitor that activity or perhaps for

accounting purposes.

The main problems when trying to diagnose hanging or failing requests when an

EJB logical server comprises multiple CICS regions are that you have to determine:

v The region where the request originated (the request receiver)

v The target (a CICS region or other server) that the request has been routed to.

The system programming interface (SPI) commands INQUIRE WORKREQUEST

and SET WORKREQUEST enable you to:

v determine which transactions are associated with a single request

v correlate all transactions associated with a single request

v purge selected work requests

Each request shows:

v the local task number and transaction id

v the type of request, the first type supported is IIOP

v a unique (printable) string that can be entered on the command as a filter e.g.

– Worktype

– ClientIPAddress

– Target VTAM applid or TCPIP address

For more information about these commands see:

v the CICS System Programming Reference manual

v the CICS System Programming Reference manual

v the CICS Supplied Transactions manual

Chapter 24. Dealing with CICS enterprise bean problems 331

v the CICS Supplied Transactions manual

The INQUIRE and SET WORKREQUEST commands are only available for IIOP

tasks.

WorkRequests associated with RequestReceivers are not included, they are very

lightweight and all this information is available in the RequestProcessor. A

RequestReceiver may process more that one request per instance and may have

left the system long before the request has completed.

When you interrogate a logical server using the CPSM WUI, you have a single

screen displaying all WorkRequests in the server

You are able with these commands to purge a RequestProcessor in a manner

similar to purging a task from the CEMT INQ TASK list.

332 Java Applications in CICS

Chapter 25. Managing security for enterprise beans

The following security mechanisms can be used with enterprise beans. You can

implement any combination of these.

Java2 security

This form of security control is implemented by the Java Virtual Machine (JVM)

and can be used with any Java program that executes under JVM control. See

“Protecting Java applications in CICS by using the Java 2 security policy

mechanism” for guidance on using this type of security control.

Secure Sockets Layer (SSL) security

The Secure Sockets Layer (SSL) is a security protocol that provides privacy

and authentication between clients and servers communicating using TCP/IP.

For more information about SSL, see the CICS RACF Security Guide. For

information about using SSL with enterprise beans see “Authentication of IIOP

requests” on page 163.

MRO security

After the request receiver has established a CICS USERID to be associated

with the request, it may need to be routed to an application-owning-region

(AOR). If the routing mechanism uses a multiple region operation (MRO)

connection, the transmission of the userid is subject to MRO security rules. See

the CICS RACF Security Guide

Security roles

A security role represents a type of user of an application in terms of the

permissions that the user must have to successfully use the application. See

“Security roles” on page 341.

Protecting Java applications in CICS by using the Java 2 security

policy mechanism

The security of the enterprise beans container environment is protected by the Java

2 security policy mechanism and is independent of CICS security. The security

policy mechanism is one of the components that make up the Java 2 security

model. The security policy mechanism is used to enforce the restrictions in the EJB

specification concerning Java functions that may not be issued by enterprise beans.

By default, Java applications have no security restrictions placed on activities

requested of the Java API; the Java API will do whatever it is asked. If you want to

use Java 2 security to protect a Java application or enterprise bean from performing

potentially unsafe actions, you need to enable a security manager for the Java

virtual machine (JVM) in which the application or enterprise bean executes. If no

security manager is enabled, then by default, the JVM runs without Java 2 security.

A default security manager is supplied with the Java 2 platform. To prevent

unauthorized access to system resources by enterprise beans, you are

recommended to enable the default security manager.

The security manager enforces a security policy, which is a set of permissions

(system access privileges) which are assigned to code sources. Every time the JVM

executes code within a class, the JVM determines the code source for the class

and consults the security policy before granting the class the appropriate

permissions. Thus, if a piece of code requests access to a particular system

resource while a security manager is active, the JVM grants the code access to that

resource only if such an access is a privilege associated with that class.

© Copyright IBM Corp. 1999, 2006 333

When a JVM starts up, its security manager determines the security policy for the

JVM by looking at one or more policy files that you have specified. The policy files

contain details of the permissions that are granted to particular code sources. A

default policy file is supplied with the Java 2 platform. If you enable the default

security manager for a JVM, but do not specify any policy files, the security

manager determines a security policy using the permissions given in the default

policy file. You can specify one or more additional policy files containing

permissions that you want to grant, and the security manager adds these

permissions to the security policy. So although only one security policy is in effect

for the JVM at any given time, this security policy can be the result of processing

one or more policy files.

To enable Java applications and enterprise beans to run successfully in CICS when

Java 2 security is active, you need to specify, as a minimum, an additional policy

file that gives CICS the permissions it needs to run the enterprise beans container,

and gives applications the permissions outlined in the Enterprise JavaBeans

specification, Version 1. The CICS-supplied enterprise beans policy file,

dfjejbpl.policy, contains the permissions that you need for this purpose. You

need to specify this additional policy file for each kind of JVM that has a security

manager enabled.

You enable the security manager for a JVM, and specify additional policy files,

using the JVM properties file for the JVM. “Enabling a Java security manager and

specifying policy files for a JVM” tells you how to do this.

If you need more information about Java 2 security than is provided here, refer to

the Java 2 documentation.

Note: Java 2 security with JDBC or SQLJ

To use JDBC or SQLJ from enterprise beans that execute in a JVM with a Java 2

security policy mechanism active, you must use the JDBC 2.0 driver provided by

DB2 Version 7 or later. The JDBC 1.2 driver provided by DB2 does not support

Java 2 security, and will fail with a security exception unless you disable the

mechanism (by deactivating the security manager for the JVM). You will also need

to modify your additional policy file to grant permissions to the JDBC driver.

“Enabling a Java security manager and specifying policy files for a JVM” tells you

more about this.

Enabling a Java security manager and specifying policy files for a JVM

To enable a Java security manager for a JVM and specify additional policy files that

you want the security manager to use, you need to customize the JVM properties

file for the JVM. The JVM properties file specifies the system properties for a JVM,

including the security manager and policy files. It is associated with the JVM profile

for a JVM. “How CICS creates JVMs” on page 71 explains what JVM profiles and

JVM properties files are, and how CICS uses them when it starts up a JVM.

“Setting up JVM profiles and JVM properties files” on page 94 contains full

information on how to choose and customize JVM profiles and JVM properties files

for a JVM.

To summarize the essential information from those topics, a JVM profile is a text file

stored on HFS, which contains options that determine the characteristics of a JVM.

When an application wants to run a Java program in a JVM, it requests a JVM with

a particular profile by specifying that JVM profile in the JVMPROFILE attribute of

the PROGRAM definition that relates to the Java program. For enterprise beans

334 Java Applications in CICS

and IIOP applications, this is the PROGRAM definition for the initial program used

by the request processor transaction definition (which is by default CIRP). This

program definition is usually DFJIIRP, and the JVMPROFILE that it specifies is

usually the CICS-supplied sample JVM profile DFHJVMCD. When you install CICS,

the sample JVM profiles are placed in the HFS directory /usr/lpp/cicsts/
cicsts31/JVMProfiles, where cicsts31 is your chosen value for the

CICS_DIRECTORY symbol.

The JVM profile references a JVM properties file, which is another text file stored

on HFS, containing the system properties for the JVM. The JVMPROPS option on

the JVM profile names the JVM properties file that CICS uses when setting up a

JVM with that profile. The CICS-supplied sample JVM properties file associated with

DFHJVMCD is called dfjjvmcd.props. When you install CICS, the sample JVM

properties files are placed in the HFS directory /usr/lpp/cicsts/cicsts31/props.

For each JVM profile that your Java applications and enterprise beans request, if

you want JVMs with that profile to run with Java 2 security, you need to modify the

JVM properties file that is associated with the JVM profile, to enable the default

security manager and specify a suitable policy file. When you have located the

relevant JVM properties file for each JVM profile that you want to use Java 2

security, customize the following system properties in the JVM properties file:

java.security.manager

This system property indicates the Java security manager to be enabled for the

JVM. To enable the default Java 2 security manager, include this system

property in one of the following formats:

 java.security.manager=default

or

 java.security.manager=""

or

 java.security.manager=

All these statements have the effect of enabling the default security manager. If

you do not include the java.security.manager system property in your JVM

properties file, then the JVM runs without Java 2 security enabled. If you need

to disable Java 2 security for a JVM, comment out this system property.

java.security.policy

This system property describes the location of additional policy files that you

want the security manager to use to determine the security policy for the JVM.

A default policy file is provided with the JVM in /usr/lpp/java142/J1.4/lib/
security/java.policy, where the java142/J1.4 subdirectory names are the

default values when you install the IBM Software Developer Kit for z/OS, Java 2

Technology Edition, Version 1.4.2. The default security manager always uses

this default policy file to determine the security policy for the JVM, and you can

use the java.security.policy system property to specify any additional policy

files that you want the security manager to take into account as well as the

default policy file.

 To enable CICS Java applications and enterprise beans to run successfully

when Java 2 security is active, you need to specify, as a minimum, an

additional policy file that gives CICS the permissions it needs to run the

enterprise beans container, and gives applications the permissions outlined in

the Enterprise JavaBeans specification, Version 1. If you do not provide these

permissions, then the container code may become inaccessible, preventing

Chapter 25. Managing security for enterprise beans 335

CorbaServers from being initialized. The CICS -supplied enterprise beans policy

file, dfjejbpl.policy, contains the permissions that you need. To specify this

policy file, include the system property:

java.security.policy=/usr/lpp/cicsts/cicsts31/lib/security/dfjejbpl.policy

where cicsts31 is your chosen value for the USSDIR installation parameter that

you defined when you installed CICS TS. “The CICS-supplied enterprise beans

policy file, dfjejbpl.policy” on page 337 has more information about

dfjejbpl.policy.

 If you need to give any of your applications further permissions, you can modify

the CICS-supplied enterprise beans policy file, or create and specify your own

additional policy file. Policy files are stored in text format, so you can display or

modify them using any standard text editing tool. In particular, if you want to use

JDBC or SQLJ from enterprise beans, you need to modify the enterprise beans

policy file that you have specified, to grant permissions to the JDBC driver. The

CICS DB2 Guide tells you how to do this.

 It is recommended that policy files are made secure, with update authority

restricted to system administrators.

When you specify a policy file in the JVM properties file, the policy file is used for

JVMs that are built using JVM profiles which reference that JVM properties file. As

an alternative, you can specify a policy file to be used for all the JVMs in your

system for which you have enabled a Java security manager, whatever JVM

properties file they have. For example, you could specify the CICS-supplied

enterprise beans policy file, dfjejbpl.policy, to be used for all your JVMs. To do

this, instead of including the java.security.policy system property in the JVM

properties file, use the alternative method described in “Specifying policy files to

apply to all JVMs.” If you specify a policy file to be used for all JVMs, remember

that to activate Java 2 security for your JVMs, you still need to add the

java.security.manager system property to your JVM properties files to enable a

Java security manager.

Specifying policy files to apply to all JVMs

As an alternative to using the java.security.policy system property in a JVM

properties file to specify additional policy files, you can name the additional policy

files in the JVM default security properties file, which applies to all JVMs. This file

is where the default Java 2 security manager looks for the name of the default

policy file, which it always uses to determine the security policy for a JVM.

The default security properties file is called java.security. It is provided by CICS

in:

/usr/lpp/java142/J1.4/lib/security/java.security

where the java142/J1.4 subdirectory names are the default values when you install

the IBM Software Developer Kit for z/OS, Java 2 Technology Edition, Version 1.4.2.

The default security properties file already includes the name of the default policy

file, /usr/lpp/java142/J1.4/lib/security/java.policy. You can add the names of

additional policy files, and the security manager will then use these files, as well as

the default policy file, to determine the security policy for all JVMs. The security

manager will also refer to any policy files that you have specified in the JVM

properties file for a particular type of JVM.

336 Java Applications in CICS

In the default security properties file java.security, policy files are specified in the

form:

policy.url.n=URL

where n represents the precedence number for the order in which the policies

should be loaded. The location of a policy file is specified as a URL, so policy files

do not need to be stored in the local file system.

Note that the precedence numbers must be serial and continuous. For example, if

policy.url.1 and policy.url.3, are present, but policy.url.2 is missing, then

policy.url.3 is ignored and only policy.url.1 is considered.

The default security properties file java.security contains these two entries:

policy.url.1=file:${java.home}/lib/security/java.policy

policy.url.2=file:${user.home}/.java.policy

To specify the CICS-supplied enterprise beans policy file, dfjejbpl.policy, as an

additional policy file to be used for all JVMs, add the entry:

policy.url.3=file:/usr/lpp/cicsts/cicsts31/lib/security/dfejbpl.policy

where cicsts31 is your chosen value for the USSDIR installation parameter that you

defined when you installed CICS TS. It is specified as policy.url.3 because two

other policy files are already specified. You can substitute the path to your own

policy file in place of dfjejbpl.policy, or add further entries to specify additional

policy files.

It is possible to bypass the default security properties file java.security for a JVM.

You can do this by specifying your own policy file on the java.security.policy

system property in the JVM properties file for the JVM, and inserting a double

equals sign (= =). For example, if you include the system property:

java.security.policy==/usr/lpp/cicsts/cicsts31/lib/security/dfejbpl.policy

then the security manager ignores any policy files that are specified in the

java.security file, and uses only dfjejbpl.policy to determine the security policy

for the JVM. However, you should bear in mind that if you bypass the default

security properties file, the security manager will not grant any permissions that are

specified in that file; it will only grant the permissions that are specified in your own

policy file.

The CICS-supplied enterprise beans policy file, dfjejbpl.policy

The CICS-supplied enterprise beans policy file, dfjejbpl.policy, is based on the

security policy recommended in the Sun Microsystems Enterprise JavaBeans

Specification, Version 1.1, which is available at http://www.javasoft.com/
products/ejb. The sample policy file is shown in Figure 36 on page 338.

In Java 2, the security policy is defined in terms of protection domains which map

permissions to code sources. A protection domain contains a code source with a set

of associated permissions.

The CICS-supplied enterprise beans policy file defines two protection domains,

which do the following:

1. Grants the required permissions to the CICS enterprise beans Container code

source for execution. See the ’grant codeBase’ block in Figure 36 on page 338.

Chapter 25. Managing security for enterprise beans 337

2. Grants any code source only the permissions outlined in the Enterprise

JavaBeans specification, Version 1. See the default ’grant’ block in Figure 36:

v To allow anyone to initiate a print job request.

v To allow outbound connection on any TCP/IP ports.

v To allow all system properties to be read.

Remember that if you want to use JDBC or SQLJ from enterprise beans, you need

to amend the CICS-supplied enterprise beans policy file to grant permissions to the

JDBC driver. The CICS DB2 Guide tells you how to do this.

Using enterprise bean security

The EJB 1.1 specification defines the following security APIs to allow enterprise

beans to make application decisions based on their callers’ security details.

java.security.Principal getCallerPrincipal()

This method is used to determine who invoked the current bean method. The

getCallerPrincipal method is fully supported in CICS. Details of the way that the

identity of the current caller is determined are shown in “Deriving distinguished

names” on page 340.

boolean isCallerInRole(String SecurityRoleReference)

This method is used to test whether the current caller is assigned to a security

role that is linked to the security role reference specified on the method call.

CICS will throw a runtime exception (which conforms to the EJB 1.1 specification) if

the following deprecated EJB 1.0 security APIs are used.

v java.security.Identity getCallerIdentity()

v boolean isCallerInRole(java.security.Identity role)

Note: Note that enterprise beans developed to the Enterprise JavaBeans (EJB) 1.0

specification need to be migrated to the Enterprise JavaBeans 1.1

specification level, using the supplied development tools.

v See “The deployment tools for enterprise beans in a CICS system” on

page 291 for information about deployment tools.

v See Chapter 20, “Writing enterprise beans,” on page 277 for information

about writing enterprise beans.

 // permissions granted to CICS enterprise beans Container codesource protection

 //domain

 grant codeBase "file:usr/lpp/cicsts/cicsts31//-" {

 permission java.security.AllPermission;

 };

// default EJB 1.1 permissions granted to all protection domains

 grant {

 // allows anyone to initiate a print job request

 permission java.lang.RuntimePermission "queuePrintJob";

 // allows outbound connection on any TCP/IP ports

 permission java.net.SocketPermission "*:0-65535", "connect";

 // allows anyone to read properties

 permission java.util.PropertyPermission "*", "read";

 };

Figure 36. Sample CICS enterprise beans security policy

338 Java Applications in CICS

v See “The deployment tools for enterprise beans in a CICS system” on

page 291 for information about deployment tools.

v See Chapter 20, “Writing enterprise beans,” on page 277 for information

about writing enterprise beans.

Defining file access permissions for enterprise beans

To successfully run enterprise beans in CICS, the CICS region userid must be

permitted to access the files used by the enterprise logic. These file permissions

are required to run enterprise beans, regardless of the level of security

implemented. See also “Giving CICS regions access to z/OS UNIX System

Services and HFS directories and files” on page 53.

Access to HFS files used by enterprise beans

 Table 16. File access permissions required for CICS enterprise beans

File/Directory structure

Minimum

permission Comments

CORBASERVER Shelf directory (for

example, /var/cicsts/)

Read, write

and execute

The shelf is accessed during

CORBASERVER and DJAR

installation, and each CICS needs to

create unique subdirectories (see note

1).

/usr/lpp/cicsts/cicsts31 directory

structure and classes

Read and

execute

Contains the CICS-supplied Java code

(see note 2).

/usr/lpp/java142/J1.4/bin and

/usr/lpp/java142/J1.4/bin/classic

directories

Read and

execute

Contain the IBM Java 2 persistent

reusable JVM code (see note 3).

CICS working directory Read, write

and execute

Used to create stdin files (see note

4).

Deployed jar file Read Used during DJAR installation by the

deployment process.

Security policy file (if required) Read Required if the java.security.policy

property is specified in the JVM

system properties file.

System properties file Read Required by CICS when creating a

JVM (see note 5).

Note:

1. /var/cicsts/ is the default SHELF directory name when you define a CORBASERVER

resource definition. Each CICS region creates a unique subdirectory in this shelf when it

installs the resource definition

2. cicsts31 is your chosen value for the USSDIR installation parameter that you defined

when you installed CICS TS.

3. The java142/J1.4 subdirectory names are the default values when you install the IBM

Software Developer Kit for z/OS, Java 2 Technology Edition, Version 1.4.2.

4. The CICS working directory is defined by the WORK_DIR parameter in the JVM profile.

5. The system properties directory and file name are named on the JVMPROPS option in

the JVM profile.

File ownership and permissions may be defined using the chmod and chown

commands. For more information, see z/OS UNIX System Services Command

Reference.

Chapter 25. Managing security for enterprise beans 339

Access to data sets used by enterprise beans

Before CORBASERVERs can be installed in a CICS region, the following two data

sets must be created with UPDATE access, defined to CICS and installed. These

files can be VSAM data sets or coupling facility data tables.

Figure 37 shows an example of RACF commands to access data sets with the

necessary authorization.

Note: These files are used internally by CICS, so no users should be given

resource level security access to them. This will prevent VSAM applications

from accessing the data in these files.

DFHEJDIR

This data set contains a request streams directory which is shared by the

listener regions and AORs comprising a CICS IIOP server. The file must be

recoverable.

DFHEJOS

DFHEJOS is a data set containing passivated stateful session beans. It is

shared by all the AORs comprising a CICS IIOP server. This file must not

be recoverable.

 See the CICS RACF Security Guide for more information about authorizing access

to CICS data sets.

Deriving distinguished names

Enterprise beans can identify their end-user, or client, by means of a Principal

object. The getCallerPrincipal method returns a Principal object representing the

client, and that Principal object contains methods that can be invoked to return

information about the client. In particular, the getName method of the Principal

object returns a String that contains the ″distinguished name″ of the client. The

distinguished name, or DN, is a sequence of keyword and value pairs, known as

relative distinguished names, or RDNs, and forms part of the X.500

recommendation (Standard ISO/IEC 9594). The string representation of a

distinguished name is suggested by RFC2253, LDAP V3: UTF-8 String

Representation of Distinguished Names.

Note: CICS Transaction Server for z/OS, Version 3 Release 1 does not verify that

a stateful session bean instance is used only by the same principal that

created it. Therefore the principal’s userid and distinguished name may be

different after a bean instance has been reactivated.

If the bean’s client has been identified and authenticated by means of a client

certificate using the secure sockets layer protocol, the distinguished name is always

obtained from that certificate. However, if the bean’s client has not provided a

certificate, the distinguished name is obtained by invoking the DFHEJDNX

user-replaceable module. The inputs to the DFHEJDNX module are the title,

organizational unit, organization, locality, state, and country, obtained from the

ADDSD ’CICSTS31.CICS.CICS.DFHEJDIR’ NOTIFY(cics_sys_admin_id) UACC(NONE)

PERMIT ’CICSTS31.CICS.CICS.DFHEJDIR’ ID(cics_id1,...,cics_group1,..,cics_groupn)

 ACCESS(UPDATE)

ADDSD ’CICSTS31.CICS.CICS.DFHEJOS’ NOTIFY(cics_sys_admin_id) UACC(NONE)

PERMIT ’CICSTS31.CICS.CICS.DFHEJOS’ ID(cics_id1,...,cics_group1,..,cics_groupn)

 ACCESS(UPDATE)

Figure 37. An example of RACF commands used to authorize access to CICS data sets

340 Java Applications in CICS

server certificate whose label is specified in the CERTIFICATE option of the

CORBASERVER definition, and the userid and common name associated with the

user ID of the user executing the bean, but if SEC=NO is specified, the CICS

region userid is used. The common name is derived by transforming the username

for that user to a mixed-case string.) The certificate label specifies a certificate

within the key ring identified by the KEYRING system initialization parameter. If the

CERTIFICATE option is omitted, information is obtained from the default certificate

in the key ring. If the KEYRING parameter is omitted, no certificate information is

passed to DFHEJDNX, and only the common name RDN is available.

The CICS-supplied version of DFHEJDNX accepts the inputs derived from the

CORBASERVER certificate and the username, and formats them into a

distinguished name in the following style:

T=CICS EJB Container,CN=Louise Peters,OU=CICS/390 Development,

O=IBM,L=Hursley,ST=Hampshire,C=GB

CICS-supplied samples of DFHEJDNX are located in the SDFHSAMP library,

CICSTS31.CICS.CICS.SDFHSAMP, as:

v DFHEJDN1 for Assembler language

v DFHEJDN2 for C language

Security roles

Access to enterprise bean methods is based on the concept of security roles. A

security role represents a type of user of an application in terms of the permissions

that the user must have to successfully use the application. For example, in a

payroll application:

v A manager role could represent users who are permitted to use all parts of the

application

v A team_leader role could represent users who are permitted to use the

administration functions of the application

v A data_entry role could represent users who are permitted to use the data entry

functions of the application

The security roles for an application are defined by the application assembler, and

are specified in the bean’s deployment descriptor. For more information, see

“Security roles in the deployment descriptor” on page 345

The security roles that are permitted to execute a bean method are also specified in

the bean’s deployment descriptor, again by the application assembler. In the

example, methods which update the hours worked by employees each week might

be assigned to the data_entry role, while methods which delete an employee from

the payroll might be assigned to the team_leader role.

To distinguish similarly named security roles in different applications, or in different

systems, the security roles specified in the bean’s deployment descriptor can be

given a one- or two-part qualifier when the bean is deployed in a CICS system. For

example:

v Security role with no qualifiers:

team_leader

v Security role with one qualifier:

payroll.team_leader

v Security role with two qualifiers:

Chapter 25. Managing security for enterprise beans 341

test.payroll.team_leader

A security role with its qualifiers is known as a deployed security role. For more

information, see “Deployed security roles.”

The mapping of security roles to individual users is done in the external security

manager. The mapping is not neccesarily one-to-one. For example, several users

might be assigned to the data_entry role, while a some users might be assigned to

both the team_leader role and the data_entry role. For more information, see

“Implementing security roles” on page 347.

The security role and display name in the deployment descriptor can contain any

ASCII or Unicode character. This is not so for names used in RACF, which are

restricted to characters in EBCDIC code page 037. In addition, some characters —

the asterisk (*) for example — have special meaning when used in RACF

commands. Therefore, when CICS constructs the deployed security role from its

components, some characters are replaced with a different character, and others

are replaced with an escape sequence. For details, see “Character substitution in

deployed security roles” on page 344.

Deployed security roles

A direct mapping between the security roles specified in a bean’s deployment

descriptor and individual users may not adequately control access to bean methods.

For example

v Two applications, provided by different suppliers, might use similar names for

security roles. In your enterprise, the users of each application might be different.

v A bean could be used in more than one application. A user may be entitled to

use a particular method in one application, but not in the other.

v An application could be deployed in a test system and a production system.

Members of the test department may be permitted to use all bean methods in the

test system, but not in the production system.

To provide the degree of control that is needed in these and other cases, you can

qualify the security roles at the application level and the system level. A security

role with its qualifiers is known as a deployed security role. Here is an example of

a role name which is qualified at both levels:

test.payroll.team_leader

v payroll qualifies the security role at the application level, and is used to

distinguish between the team_leader role in the payroll application and the

team_leader role in other applications.

v test qualifies the security role at the system level, and is used to distinguish

between the payroll.team_leader role in the test system and the

payroll.team_leader role in other systems.

At the application level, security roles are qualified by the display name, if one is

specified in the deployment descriptor. If a display name is not specified, the

security roles are not qualified at the application level. If an application level

qualifier is used, a period (.) is used as the delimiter; if no qualifier is used, there is

no delimiter.

At the system level, security roles are optionally qualified with a prefix which is

specified in the EJBROLEPRFX system initialization parameter. If EJBROLEPRFX

is not specified, the security roles are not qualified at the system level. If a system

level qualifier is used, a period (.) is used as the delimiter; if no qualifier is used,

there is no delimiter.

342 Java Applications in CICS

This example shows how security roles defined in a bean’s deployment descriptor

can be qualified:

v A bean contains three security roles: manager, team_leader, and data_entry

v The bean is used in a payroll application, with a display name of payroll. The

bean is also part of a test application, which does not have a display name.

v The payroll application is used on two production systems: the first does not

specify a prefix, while the second specifies a prefix of executive.

v The test application is used on a test system with a prefix of test1.

When the two levels of qualification are applied to the security roles specified in the

deployment descriptor, the deployed security roles are:

payroll.manager executive.payroll.manager test1.manager

payroll.team_leader executive.payroll.team_leader test1.team_leader

payroll.data_entry executive.payroll.data_entry test1.data_entry

Each of these deployed roles can be mapped to individual users (or groups of

users) to suit the security need of the enterprise.

If a security role is not qualified at the application level, or at the system level, then

the deployed security role is the same as the security role defined in the

deployment descriptor. For example, if the bean in the previous example is used in

an application which does not have a display name, and the application is used in a

system that does not specify EJBROLEPRFX, then the deployed security roles are:

manager

team_leader

data_entry

Enabling and disabling support for security roles

By default, CICS support for security roles is enabled. You can use the XEJB

system initialization parameter to disable (or explicitly enable) support for security

roles. If you disable the support:

v CICS does not perform method authorization checks: all users are permitted to

use all bean methods.

v The isCallerInRole() method returns true for all users.

Security role references

Within an application, the isCallerInRole() method can be used to determine if the

user of the application is defined to a given role. The method takes a security role

reference as an argument, rather than a security role. The security role references

coded in the bean are defined by the bean provider, and declared in the bean’s

deployment descriptor.

For more information, see “Security roles in the deployment descriptor” on page 345

Each security role reference is linked to a security role by the application

assembler; the linkage is declared in the deployment descriptor for the bean. For

example, the security role reference of administrator used within the bean’s code

might be linked, in the deployment descriptor, to the team_leader role.

For more information, see “Security roles in the deployment descriptor” on page 345

Chapter 25. Managing security for enterprise beans 343

Character substitution in deployed security roles

The security role and display name in the deployment descriptor can contain any

ASCII or Unicode character. The character set which can be used in deployed

security roles is more restricted:

v Profile names used in RACF are restricted to characters in EBCDIC code page

037.

v Some characters — the asterisk (*) for example — have special meaning when

used in RACF commands, and cannot be used in a profile name.

When Unicode characters in the security role and display name cannot be used

directly in the deployed security role, they are replaced by the escape sequences

shown in Table 17. Substitution occurs:

v when the EJBROLE generator utility (dfhreg) processes the deployment

descriptor to generate RACF commands

v when CICS maps a security role to a RACF user ID

 Table 17. Escape sequences used in security roles

Character Description ASCII/Unicode EBCDIC

Codepage 037

Escape

sequence

ASCII and Unicode values whose equivalent EBCDIC value cannot be used in a deployed

security role name are replaced with a three-character escape sequence as follows:

blank X’20’ X’40’ ¢

¢ cent X’A2’ X’4A’ \A2

\ back slash X’5C’ X’E0’ \5C

* asterisk X’2A’ X’5C’ \2A

& ampersand X’26’ X’50’ \26

% per cent X’25’ X’6C’ \25

, comma X’2C’ X’6B’ \2C

(left parethesis X’28’ X’4D’ \28

) right parenthesis X’29’ X’5D’ \29

; semicolon X’3B’ X’5E’ \3B

Unicode values which do not have an equivalent in EBCDIC Codepage 037 are replaced

with the Unicode escape sequence: a character with a Unicode representation of X’yyyy’ is

replaced by \uyyyy. For example:

€ Euro symbol X’20AC’ not supported \u20AC

Hiragana Ki X’304D’ not supported \u304D

α alpha X’03B1’ not supported \u03B1

Here are two examples that illustrate the way that characters are substituted:

Example 1

v The EJBROLEPRFX has a value of test

v The display name in the deployment descriptor has a value of

year.end.processing

v The security role in the deployment descriptor has a value of auditor 1

In this example, when the deployed security role is constructed:

1. Each space is replaced with ¢

344 Java Applications in CICS

2. The deployed security role is composed from the EJBROLEPRFX value,

the display name, and the security role; a period is used as the

delimiter.

The resulting deployed security role is:

test.year.end.processing.auditor¢1

Example 2

v The EJBROLEPRFX has a value of test

v The display name in the deployment descriptor has a value of αβ32. The

Unicode encoding is X’03B1 03B2 0033 0034’.

v The security role in the deployment descriptor has a value of auditor 1

In this example, when the deployed security role is constructed:

1. Each Unicode character that has an equivalent in EBCDIC code page

037 is replaced accordingly: In the display name, X’0033 0034’ is

replaced by 34.

2. Each Unicode character that does not have an equivalent in EBCDIC

code page 037 is replaced with the corresponding escape sequence. In

the display name, X’03B1 03B2’ is replaced by \u03B1\u03B2

3. Each space is replaced with ¢

4. The deployed security role is composed from the EJBROLEPRFX value,

the display name, and the security role; a period is used as the

delimiter.

The resulting deployed security role is:

test.\u03B1\u03B234.auditor¢1

Security roles in the deployment descriptor

Figure 38 on page 346 shows a fragment of a deployment descriptor that includes

security role information. It contains:

v 1 A display name of payroll.

v 2 The security role reference of administrator which is linked to the team_leader

role.

v 3 A security role of team_leader.

v 4 A method permission that allows a user defined in the team_leader role to

invoke the create() method.

Chapter 25. Managing security for enterprise beans 345

If an application with this deployment descriptor is used in a CICS system with the

following system initialisation parameters:

SEC=YES

XEJB=YES

EJBROLEPRFX=’test’

v The deployed security role of test.payroll.team_leader must be defined to

RACF.

v Users that have READ access to that deployed security role will be permitted to

invoke the create() method.

v isCallerInRole(’administrator’) will return true for users defined in the

deployed security role of test.payroll.team_leader, and false for other users.

For detailed information about the contents of the deployment descriptor, refer to

Enterprise JavaBeans Specification, Version 1.1.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC

"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN"

"http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

 <ejb-jar id="ejb-jar_ID">

 <display-name>payroll</display-name> 1

 <enterprise-beans>

 <session id="Session_1">

 .

 .

 <security-role-ref id="SecurityRoleRef_1">

 <role-name>administrator</role-name> 2

 <role-link>team_leader</role-link>

 </security-role-ref>

 .

 .

 </session>

 </enterprise-beans>

 <assembly-descriptor id="AssemblyDescriptor_1">

 <security-role id="SecurityRole_1">

 <role-name>team_leader</role-name> 3

 </security-role>

 .

 .

 <method-permission id="MethodPermission_1">

 <description>team_leader:+:</description>

 <role-name>team_leader</role-name> 4

 <method id="MethodElement_01">

 <ejb-name>Managed</ejb-name>

 <method-intf>Home</method-intf>

 <method-name>create</method-name>

 <method-params>

 </method-params>

 </method>

 .

 .

 </method-permission>

 .

 .

 </assembly-descriptor>

 .

 .

 </ejb-jar>

Figure 38. Example of a deployment descriptor containing security roles

346 Java Applications in CICS

To view the contents of a deployment descriptor, you can use the Assembly Toolkit

(ATK). For more information about ATK, see the CICS Operations and Utilities

Guide.

Implementing security roles

Access to enterprise bean methods is based on the concept of security roles.

These are described in “Security roles” on page 341.

To implement the use of security roles in a CICS enterprise bean environment, you

must:

1. Determine which security roles are defined in the application’s deployment

descriptor.

2. Determine the display names associated with the security roles in the

application’s deployment descriptor. The display name qualifies the security role

at the application level.

3. Decide whether you need to qualify the security role name at the system level,

and — if you do — the value of the prefix which you will use in each system

where the application executes.

4. Using the information gathered in steps 1 through 3, determine the names of

the deployed security roles used by the application in each system. Characters

in the security role and display name that do not have a direct equivalent in

EBCDIC code page 37 (and some other characters) must be replaced with a

different character or an escape sequence when constructing the deployed

security role. See “Character substitution in deployed security roles” on page

344 for more information.

5. Using the information gathered in steps 1 through 3, define RACF profiles for

the deployed security roles. See “Defining security roles to RACF” on page 349

for more information.

6. Associate individual users or groups of users with each deployed security role in

RACF. See “Defining security roles to RACF” on page 349 for more information.

7. Specify these system initialization parameters:

v SEC=YES

v XEJB=YES. This is the default value, so you do not need to specify it explicitly.

8. For those systems where the deployed security roles contain a system level

qualifier (see step 3), specify the EJBROLEPRFX system initialization

parameter.

Using the RACF EJBROLE generator utility

The RACF EJBROLE generator utility (dfhreg) is a Java application program that

extracts security role information from deployment descriptors, and generates a

REXX program which can be used to define security roles to RACF .

The REXX program that dfhreg generates contains the RACF commands that

define security roles as members of a profile in the GEJBROLE class. Before you

run the REXX program, you will need to modify it, in order to change the name of

the profile that is defined.

The dfhreg invocation scripts for USS (dfhreg) and for Windows (dfhreg.bat) are in

the CICS_DIRECTORY/lib/security directory. The implementation of dfhreg

(dfhreg.jar) is also in this directory. The other JAR files required to run dfhreg

Chapter 25. Managing security for enterprise beans 347

(dfjcsi.jar, dfjejbdd.jar, and dfjorb.jar) are in the CICS_DIRECTORY/lib

directory. CICS_DIRECTORY is the HFS directory in which you have installed the USS

components of CICS.

You can execute dfhreg on any platform that supports Java; however, you must

execute the resulting REXX program against the RACF database on the z/OS

system where you wish to define the security roles. When you run dfhreg:

1. Your classpath must contain:

dfhreg.jar

dfjcsi.jar

dfjejbdd.jar

dfjorb.jar

2. You must be using a 1.4 or later version of the Java 2 SDK.

The REXX program which the utility generates is in the code page of the platform

where the utility executes. If you run the utility on a platform that uses an ASCII

code page, you must convert the REXX program to the EBCDIC code page used

on the target z/OS system.

Executing the utility

To execute the utility enter the following on the command line:

dfhreg [options] inputfiledesc

The full syntax is

dfhreg [-secprfx secprfx]

 [-out outputfiledesc]

 [-f | -force]

 [-v | -verbose]

 [-? | -help]

 inputfiledesc

where

–secprfx secprfx

Specifies the name used to qualify the security role name at system level. The

value you specify must match the value of the EJBROLEPRFX system

initialization parameter for the CICS system where the security roles will be

used

out outputfiledesc

Specifies the file which to which the utility writes its output. If you do not specify

a file, output will be written to standard output.

inputfiledesc

Specifies the input file containing the deployment descriptor. The file must be a

Java archive file (file type jar).

–f | –force

Specifies that the utility will overwrite an existing output file.

–v | –verbose

Specifies that processing messages will be written to standard output.

–? | –help

Displays a summary of the syntax for the utility.

All options are case sensitive; the keywords (-secprfx, -out, -force, -f, -verbose,

-v, -help) must be entered in lower case.

348 Java Applications in CICS

If the utility encounters an error, it generates one or more messages. These are

described in CICS Messages and Codes.

Defining security roles to RACF

In RACF, deployed security roles are managed as general resources. To define the

deployed security roles, define profiles in the GEJBROLE or EJBROLE resource

classes, with appropriate access lists.

For example, to use the following commands to define deployed security roles

deployed_security_role_1and deployed_securityrole_2 as members of the

securityrole_group profile in the GEJBROLE class, and give READ access to user1

and user2:

RDEFINE GEJBROLE securityrole_group UACC(NONE)

 ADDMEM(deployed_security_role_1, deployed_securityrole_2, ...)

 NOTIFY(sys_admin_userid)

PERMIT securityrole_group CLASS(GEJBROLE) ID(user1, user2) ACCESS(READ)

Alternatively, use the following commands to define deployed security roles in the

EJBROLE class, and to give users READ access to each deployed security role:

RDEFINE EJBROLE (deployed_security_role1, deployed_security_role2, ...) UACC(NONE)

 NOTIFY(sys_admin_userid)

PERMIT deployed_security_role1 CLASS(EJBROLE) ID(user1, user2) ACCESS(READ)

PERMIT deployed_security_role2 CLASS(EJBROLE) ID(user1, user2) ACCESS(READ)

Note:

1. The security role you specify is the deployed security role, and not the

unqualified security role which is defined in the deployment descriptor.

2. To execute a bean method, or to receive a true response from the

isCallerInRole() method, a user requires READ access.

Chapter 25. Managing security for enterprise beans 349

350 Java Applications in CICS

Chapter 26. CICSPlex SM with enterprise beans

This chapter describes the following:

v “CICSPlex SM support for enterprise beans”

v “CICSPlex SM definition support for enterprise beans”

v “BAS logical scope considerations” on page 352

v “Migration of enterprise bean components” on page 353

v “CICSPlex SM inquiry support for enterprise beans” on page 353

v “Types of inquiry available for enterprise bean objects” on page 354

v “Using CICSPlex SM to manage EJB workloads” on page 354

v “Workload balancing” on page 355

v “Workload separation” on page 355

v “CICSPlex SM resource monitoring considerations for enterprise beans” on page

356

v “CICSPlex SM real-time analysis considerations for enterprise beans” on page

356

CICSPlex SM support for enterprise beans

The management of enterprise beans may be undertaken at a CICSplex wide level,

by utilizing the Operator and API services of CICSPlex SM. The function provided

by CICSPlex SM for the support of Enterprise JavaBeans includes:

v Object management for CorbaServer and DJAR definitions

v Object management for installed CorbaServer and DJAR instances

v Dynamic management of enterprise bean execution

The CICSPlex SM areas that cover these facilities are:

v The application programming interface (API) - to allow the definition, enquiry and

management of enterprise bean objects through the EXEC CPSM interface. See

the CICSPlex System Manager Application Programming Guide for information.

v The web user interface - to allow the enquiry and management of enterprise

bean objects through an http browser such as Internet Explorer and Netscape

Navigator. See the CICSPlex System Manager Web User Interface Guide for

information about the Web User Interface.

v The end user interface (EUI) - to allow the definition, enquiry and management of

enterprise bean objects through a traditional 3270 interface via MVS/TSO. See

the CICSPlex System Manager Operations Views Reference for information.

CICSPlex SM definition support for enterprise beans

Business Application Services (BAS) is the CPSM component concerned with the

definition and installation of CICS resources—see CICSPlex System Manager

Managing Business Applications. The BAS objects that are specific to Enterprise

JavaBeans are:

v EJCODEF—enterprise bean CorbaServer definition

v EJDJDEF—enterprise bean CICS-deployed JAR file definition

The CorbaServer definition object (EJCODEF) allows the specification of exactly the

same CorbaServer characteristics as the CEDA version. EJCODEF is described in

CICSPlex System Manager Managing Business Applications

© Copyright IBM Corp. 1999, 2006 351

The CICS-deployed JAR file definition object (EJDJDEF) allows the specification of

exactly the same DJAR characteristics as the CEDA version. EJDJDEF is described

in CICSPlex System Manager Managing Business Applications.

These resources are fully integrated into the standard BAS functionality, and they

may be managed and installed automatically, or on an ad hoc basis as a user may

require.

In addition to these two object types, there are some other BAS objects that are

related to enterprise bean operation:

v TCPDEF—TCPIPSERVICE definition

v RQMDEF—REQUESTMODEL definition

v TRANDEF—CICS TRANSACTION definition

v PROGDEF—PROGRAM definition

Enterprise bean execution requests from clients reach the CICS listener region

through a TCP/IP port. If using BAS, the number of this port must be specified

through a TCPDEF object that should be installed at all listener regions expected to

respond to these calls. The content of a TCPDEF should mirror that specified for

the CEDA TCPIPSERVICE definition. See “Setting up TCP/IP for IIOP” on page 180

for information.

If users require the execution requests for specific enterprise beans to be

recognized and managed differently to that for generic enterprise bean executions,

then a request model may be used to associate it with a user specified transaction

code. Within CICSPlex SM, request models are defined through RQMDEF objects,

and should be installed on all listener regions where such requests need

interception. Depending on the complexity of the enterprise bean, it may be

necessary to additionally install the request models on the associated AORs. The

contents of these RQMDEFs should mirror that specified for the CEDA

REQUESTMODEL definition. See “Obtaining a CICS TRANSID” on page 192 for

information.

In a distributed enterprise bean processing environment, it would be expected that

certain CICS regions will act as listeners to receive the IIOP execution requests,

and others will act as the AORs, to provide the actual EJB environment for

execution of the required enterprise beans. The CICSPlex SM TRANDEF object is a

particularly powerful tool to employ here, because a single transaction definition

object may be installed both dynamically on the Listener regions, and statically on

the AORs, through a single BAS resource assignment (RASGNDEF), as described

in CICSPlex System Manager Managing Business Applications.

BAS logical scope considerations

One of the benefits of using BAS to define and install user business application

suites, is that users may then scope their object views to the resources pertinent to

their installed application instances. For example, if a business application

comprises of a particular set of files, transactions, and programs, the LOCTRAN,

LOCFILE and PROGRAM views will be isolated to instances of only the matching

objects on the regions where they are installed. The facility to allow this restricted

object view is know as ″logical scoping″. The CorbaServer and DJAR objects may

participate in logical scoping in exactly the same way as other traditional BAS

definitions.

352 Java Applications in CICS

Note: Enterprise beans are not defined to CICS as such. They become identified to

CICS when their associated DJARs come into service after installation in a

CICS region. Therefore, enterprise beans may ″adopt″ a logical scope

through the association of their DJAR. However, the Enterprise JavaBean

specification allows the enterprise beans for different applications, to be

installed in a single DJAR. If you follow this practice, it will be impossible for

the logical scope process to differentiate between the installed enterprise

beans and the appropriate business application names. As such, if users

want to exploit BAS logical scoping to augment their CICSPlex views of

enterprise bean objects, separate DJARs should be employed to contain

enterprise beans discrete to the scoped business applications.

Migration of enterprise bean components

CICSPlex SM provides a toolset to assist users in migrating their RDO (resource

definition online) objects from the CICS CSD to the CICSPlex SM data repository.

This toolset comprises an exit program for the CICS offline CSD utility program, and

some sample JCL to execute it, see the CICSPlex System Manager Managing

Business Applications.

This CICSPlex SM exit will recognise CORBASERVER and DJAR definitions in a

CSD, and generate the appropriate BAS CREATE EJCODEF and CREATE

EJDJDEF statements, for input via the CICSPlex SM BatchRep process. All of the

normal selection rules for resource identification may be applied to these EJB

resource types.

CICSPlex SM inquiry support for enterprise beans

Installed CorbaServer and DJAR instances may be managed by CICSPlex SM

through any of the three interfaces described in “CICSPlex SM support for

enterprise beans” on page 351. All of the interactive operator services provided

through the CICS CEMT and CEOT transactions are functionally replicated in

CICSPlex SM via the EUI, or through a web browser window. In either case, the

installed CICS objects mapped by CICSPlex SM are:

v EJCOSE—CorbaServer instances

v EJDJAR—CICS-deployed JAR file instances

Additionally, any executable enterprise beans may be listed through these objects:

v EJCOBEAN—Enterprise JavaBeans directly associated with a CorbaServer

v EJDJBEAN—enterprise beans directly associated with a DJAR

Both of these objects describe an enterprise bean structure: one is keyed through a

CorbaServer name, and the other is keyed through a DJAR id. In both cases, the

only enterprise bean content available for enquiry is the CorbaServer name, the

DJAR name, and the enterprise bean name up to 240 characters in length. The

Enterprise JavaBean specification states that enterprise bean names may be much

longer, but the CICS implementation limits them to 240 bytes. An additional detail

that CICSPlex SM inquiries provide over a standard CICS inquiry is a count of the

available beans in any given DJAR or CorbaServer. When a new set of enterprise

beans are deployed via a DJAR to a particular CorbaServer, the enterprise bean

count can provide an instant confirmation as to the availability of the enterprise

beans in question. The value is incremented according to the number of enterprise

beans accepted through the DJAR installation process.

Chapter 26. CICSPlex SM with enterprise beans 353

Other Enterprise Java associated CICS objects that are inquirable through CPSM

are:

v TCPIPS - TCPIPSERVICE instances

v RQMODEL—REQUESTMODEL instances

v LOCTRAN—local transaction instances

v UOWORK—unit of work instances

v UOWLINK—unit-of-work-link (UOWLINK) instances

v PROGRAM—program instances

All of these objects include attributes which have relevance to the management and

execution of enterprise beans.

Types of inquiry available for enterprise bean objects

As stated previously, there are three paths of inquiry regarding the state of your

EJB objects with CICSPlex SM:

v For inquiries through the CICSPlex SM Application Programming Interface, you

should refer to the CICSPlex System Manager Application Programming

Reference (for details of the available CICSPlex SM API commands), in

conjunction with the CICSPlex System Manager Resource Tables Reference (for

details of the attributes and actions allowed against each CICSPlex SM object

(resource table)).

v For inquiries through the CICSPlex SM Web User Interface, you should refer to

the CICSPlex System Manager Web User Interface Guide. Note that the

rationale of the Web User Interface is for users to tailor and configure their

inquiry structure according to the requirements (and authority) of their operators.

However, to assist new users to get online as easily as possible with the Web

User Interface, a starter set is provided that comprises an inquiry suite similar in

structure to that of the traditional CICSPlex SM EUI. Within this starter set are a

set of menus and panels under the link labelled ″Enterprise Java component

views″.

v For inquiries through the traditional 3270 end user interface (EUI) via TSO/MVS,

you should refer to the CICSPlex System Manager Operations Views Reference

for details of the available CICSPlex SM views.

Note: The EJB menu command is ENTJAVA, and is available as a direct

command, or as an item under the main OPERATE menu.

Using CICSPlex SM to manage EJB workloads

One of the standard CICSPlex SM component functions is the facility for balancing

and separating CICS transactions in an MRO environment, known as workload

management (WLM). This facility is well suited to the management of EJB

workloads, where the enterprise beans are executed in a distributed, or logical

CorbaServer, environment. In its most simple configuration, CICSPlex SM can

balance an enterprise bean execution workload across a series of application

owning regions (AORs), depending on performance targets and stability algorithms

established by user definitions. These functions are implemented when the

CICSPlex SM supplied distributed routing exit program (EYU9XLOP) is named as

the DSRTPGM parameter in the system initialisation parameters of participating

listeners and AORs (see CICSPlex System Manager Managing Workloads).

The algorithms used by CICSPlex SM to select suitable AORs for enterprise bean

execution has been established and tuned since the inception of the product.

354 Java Applications in CICS

However, users may choose to develop their own routing algorithm program, and

replace the supplied CICSPlex SM version (EYU9WRAM) if they require to do so.

Workload balancing

CICSPlex SM workload balancing provides function that allows the most suitable

AOR to be selected to host the execution of an enterprise bean, according to

predetermined selection criteria specified by a Systems Administrator.

Note: Note that this AOR selection process evaluates all concurrent execution

activity, over the regions designated as possible routing targets, and selects

the most suitable region in terms of execution workload, and region stability

at the point of enquiry. This is not the same as the cyclic selection of an

AOR from all those available in a target scope for serially executed beans.

Itis the evaluation of all active transactions within the WLM scope at the time

when a new transaction (enterprise bean) is about to be executed, and the

selection of the least loaded, or most stable, region to host the object

execution.
The implementation of simple workload balancing for all Enterprise Java bean

throughput has these prerequisites:

v The necessary TCP/IP definitions are installed on the designated listener regions

v DSRTPGM=EYU9XLOP is specified as a SIT parameter on all listeners and

AORs

v MASPLTWAIT(YES) is included as an EYUPARM on all of the listener regions

v The request processor transaction (the default transaction is CIRP) has been

dynamically defined to the listener regions and statically defined to the AORs

v The necessary CorbaServer and DJAR definitions are installed (either through

BAS or CEDA) to establish the executable EJB environment

v The enterprise beans have been deployed and are INSERVICE

When the listed criteria have been met, the implementation of EJB workload

balancing is relatively simple. A simple workload specification object (WLMSPEC)

needs to be defined specifying the AORs as the target scope. The WLMSPEC

object then needs to be installed on all listeners and AORs that are to join the

workload. When the WLMSPEC has been installed, all regions encompassed by it

will have their EJB workloads balanced after they have been restarted. A detailed

example of enterprise bean workload balancing is given in the CICSPlex System

Manager Managing Workloads.

Workload separation

Workload separation is the WLM function that causes transactions which meet

predesignated selection criteria to be routed to specific target scopes. The target

scope for a separated workload item may vary from a single AOR to a large AOR

group comprising many CICS regions. If an AOR group is the target, the balancing

algorithm will be applied to select the most suitable region from those defined to it.

To implement a workload that includes separated enterprise beans, you must first

establish the prerequisite workload balancing described in “Workload balancing.”

That configuration needs to be augmented with the following additional components:

v A cloned CIRP transaction for each enterprise bean that needs to be separated

(a simple copy of the existing definition to a new name)

v A request model for each enterprise bean to be separated, to associate it with

one of the cloned CIRP transactions

Chapter 26. CICSPlex SM with enterprise beans 355

This will allow the CICS and EJB environments to be established enabling

enterprise bean separation. The WLM definitions will then need to be created to

implement it. This entails identifying the cloned CIRP transactions as being objects

of interest, and associating them with the required target scopes through a series

WLM definitions. These WLM definitions must be associated to an overall WLM

specification, via an intermediate WLM group, and then the specification must be

added to the CICS group that includes all listeners and AORs that are to participate

in the workload. A detailed example of enterprise bean workload separation is given

in the CICSPlex System Manager Managing Workloads.

CICSPlex SM resource monitoring considerations for enterprise beans

CICSPlex SM monitoring allows the collection of performance-related data, at

user-defined intervals, for named resource instances within a set of CICS systems.

Currently, no performance-related data is recorded for specific EJB objects

(CorbaServers and DJARs). However, performance data for the IIOP request

receiver and request processor transactions are available as normal, and so the

execution performance of enterprise beans may be monitored through an

associated transaction code (see the CICSPlex System Manager Monitor Views

Reference). Users will require request models and CIRP clones for each bean that

needs to be monitored, in the same way as for enterprise bean workload

separation, described in “Workload separation” on page 355. However, CICSPlex

SM monitoring is not integrated with BAS logical scoping, so your monitor views

scope should be set to the physical CICS group that covers the regions to be

monitored, rather than the BAS resource description that installed the transaction

definitions. An overview of the monitoring function is given in the CICSPlex System

Manager Concepts and Planning. Full details of the monitoring function is given in

CICSPlex System Manager Managing Resource Usage.

CICSPlex SM real-time analysis considerations for enterprise beans

The real-time analysis (RTA) function of CICSPlex SM provides the automatic and

external notification of conditions in which users have expressed an interest.

Real-time analysis may be divided between several sub-components:

v System Availability Monitoring (SAM) - monitors CICS regions during their

planned hours of availability, and generates notifications when no responses are

received from a region that is expected to be active.

v MAS Resource Monitoring (MRM) - monitors the state of any inquirable CICS

resource, and generates notifications when that state varies from a

predetermined norm.

v Analysis Point Monitoring (APM) - replicates the function of MRM, except that it

analyses states at a CICSplex level, rather than at a specific CICS region. APM

is particularly useful in environments that use cloned AORs, where regions are

identical and one notification is sufficient to alert you to a general problem.

Clearly SAM is a useful function for reporting the availability of CICS regions,

regardless of whether they are designated listeners or AORs. If you are executing

enterprise beans in a distributed environment, then MRM may be more useful for

monitoring the state of CorbaServers and DJARs, rather than the region based

functions of APM. However, be aware that you cannot monitor enterprise bean

objects themselves (EJCOBEAN and EJDJBEAN) within RTA. Enterprise bean

inquiries may be keyed only on their corresponding CorbaServer or DJAR names.

Specific inquiries may not be made solely on the enterprise bean name. An

356 Java Applications in CICS

overview of the RTA function is given in CICSPlex System Manager Concepts and

Planning. Full detail of the RTA function is given in CICSPlex System Manager

Managing Resource Usage.

Chapter 26. CICSPlex SM with enterprise beans 357

358 Java Applications in CICS

Part 6. Using stateless CORBA objects

This Part tells you what you need to know to develop stateless IIOP applications.

© Copyright IBM Corp. 1999, 2006 359

360 Java Applications in CICS

Chapter 27. Stateless CORBA objects

From the client perspective, a stateless CORBA object invoked by means of the

CICS ORB is just a collection of methods—that is, a stateless object. Each remote

method represents a piece of logic that may make one or more CICS API calls,

including program-link calls, to existing CICS programs. CICS stateless CORBA

objects execute in a CICS JVM. At the end of the remote method, the JVM is reset,

causing any state data to be lost.

This implies that every remote method must be passed sufficient information in its

parameter list to enable it to complete its work. No information is passed to the

server ORB by way of the object reference, except the object type, which is used to

find the implementation class. However, the methods of the object may save state

in application-managed data storage between invocations. They will need to ensure

that sufficient information is passed as parameters to subsequent methods so that

the saved state can be retrieved.

A CORBA object can make outbound IIOP calls, including calls to enterprise beans

running under the same or under a different CorbaServer. A CORBA object can

even pass a reference to itself as a parameter on a remote IIOP method. This is

known as a call back reference. However, if the target object uses the call back

reference to call the first CORBA object, this new request is processed in a new

JVM; thus it has no access to any state from the original JVM.

Method invocations may participate in Object Transaction Service (OTS)

distributed transactions. If a client calls an IIOP application in the scope of an

OTS transaction, information about the OTS transaction flows as an extra

parameter on the IIOP call. If a target stateless CORBA object implements

CosTransactions::TransactionalObject, the object is treated as transactional.

Developing stateless CORBA objects

Stateless CORBA objects are Java server applications that communicate with a

client application using the IIOP protocol. No state is maintained in object attributes

between successive client invocations of remote methods; state is initialized at the

start of each remote method call and referenced by explicit parameters.

Note: By a remote method we mean a method that may be called from a remote

client. That is, a public method that is exposed as part of one of the object’s

(potentially multiple) remote interfaces, or declared in the IDL for the object;

rather than an internal method that cannot be accessed from a remote client.

In the server programming model, each method is a subroutine. The parameters

passed allow you to establish temporary state from any existing databases or

applications, to perform business logic, to store data in the existing databases or

applications, to return results when the subroutine returns, or to throw an exception.

The remote methods of a stateless CORBA object—that is, those that may be

called by a remote client—may call each other locally or call non-remote methods

without the object’s temporary state being lost. The temporary state is only

discarded at the end of the client-initiated remote method request, when the JVM is

reset.

You can develop a stateless CORBA application using either of two different

approaches:

© Copyright IBM Corp. 1999, 2006 361

1. Use the typical CORBA development style, whereby an application interface is

defined in Interface Definition Language (IDL) and then the application is coded

to that interface. This approach is described in the sections that follow.

2. Use the typical Java development style, whereby a Java Remote Method

Invocation (RMI) application is developed and IDL is optionally generated later.

This approach is known as RMI-IIOP. It is described in “Developing an RMI-IIOP

stateless CORBA application” on page 369.

To develop a stateless CORBA object using the first (CORBA-style) approach, you

need to perform the following steps:

1. Use the Interface Definition Language (IDL) to define the object’s interfaces

and operations.

2. Run the IDL-to-Java compiler (IDLJ) against the IDL to generate stub and

skeleton classes for the object.

3. Write a client application that makes calls to the server using the generated stub

class.

4. Write a server application (the stateless CORBA object) that extends the

generated base skeleton class.

5. Compile and package the client and server applications.

6. Define CICS resources for the server and add the server application’s JAR file

to the shareable application class path in the JVM properties file for the JVM

that the application uses.

To develop a stateless CORBA object using the second (Java-style) approach, you

need to perform the following steps:

1. Write a remote interface for the server application (the stateless CORBA object).

2. Write a client application that makes calls to the server using this remote

interface.

3. Write a server application that implements the remote interface.

4. Compile the client and server applications.

5. Run the Java RMI compiler (RMIC) against the remote interface and server

application to generate stub and tie classes for the object.

6. Package the client and server applications.

7. Define CICS resources for the server and add the server application’s JAR file

to the shareable application class path in the JVM properties file for the JVM

that the application uses.

8. Optionally, create IDL for the application for use by non-Java CORBA clients.

There are benefits and drawbacks to each of the two approaches. One of the main

differences is that the CORBA approach requires the stateless CORBA object to

extend a generated base class. Given that Java supports only a single inheritance

hierarchy, this means that you cannot make your stateless CORBA object extend a

class of your choice. The RMI-IIOP approach allows you to use an inheritance

hierarchy of your choice for the stateless CORBA object, because the object only

has to implement a specific interface.

The CORBA interface and operation names are mapped to corresponding Java

implementations. You can develop server implementations that use the CICS Java

classes (JCICS) to access CICS services. See the JCICS Class Reference for

details of the JCICS classes, and Chapter 6, “Java programming using JCICS,” on

page 17 for an explanation of how to develop server applications using them.

362 Java Applications in CICS

The JCICS classes are fully documented in JAVADOC html that is generated from

the class definitions. This is available through the CICS Information Center, in the

JCICS Class Reference.

Obtaining an interoperable object reference (IOR)

To locate a server object at run-time, the client application requires a reference to it.

This reference is called an Interoperable Object Reference (IOR). An IOR is a text

string encoded in a specific way, such that a client ORB can decode the IOR to

locate the remote server object. It contains enough information to allow:

v A request to be directed to the correct server (host, port number)

v An object to be located or created (classname, instance data)

IORs may be returned by server methods, but a factory class is needed to create

an initial IOR. CICS uses the CORBA LifeCycle Services’ (CosLifeCycle)

GenericFactory class for this purpose. A client application can use this

GenericFactory to create IORs for each stateless CORBA object needed at runtime.

However, the GenericFactory is itself a stateless CORBA object and thus the client

application will need its IOR before it can create the target object’s IOR.

Use the PERFORM CORBASERVER PUBLISH command to publish a stringified

IOR for the GenericFactory class. The GenericFactory IOR is then created and

stored on the shelf (an HFS directory associated with the CorbaServer), and

published to the nameserver. The GenericFactory IOR can be used by the client

application to create IORs for any stateless CORBA objects that exist for this

CorbaServer (and only for this CorbaServer). The IOR is published with the name

genfac.ior. How the client locates the GenericFactory IOR at runtime is an

application architecture decision. The IOR could be retrieved from a well known

location in a JNDI namespace, be kept locally on the client machine, or accessed

by some other process.

You can use the CICS CEMT command (see the CICS Supplied Transactions

manual) to issue the PERFORM command, or you can issue EXEC CICS

PERFORM (see the CICS System Programming Reference manual) from a CICS

application.

The genfac.ior file is written to the CORBASERVER’s shelf directory :

/shelf/applid/corbaserver/

where:

shelf is the SHELF directory name specified in the CORBASERVER resource

definition, defaulting to /var/cicsts/

applid is the is the APPLID identifier associated with the CICS region

corbaserver

is the CORBASERVER resource name

You can download the IOR to your client workstation (in ASCII mode) from the shelf

using FTP. Alternatively, your client can use the JNDI interface to obtain the IOR

from the nameserver.

Due to the stateless nature of the object, there is seldom any point in a client

creating more than one instance of a class. Once a client has created an instance

Chapter 27. Stateless CORBA objects 363

of an object, for example bankaccountfacilitator, the same object can be used to

access both Mr X’s account and Mr Y’s account; the account number is an input

parameter in every method.

Note: We have called the object in this example a bankaccountfacilitator so that

it can perform actions on any account. To have called it simply a

bankaccount might imply that the instance always represented Mr X’s

account.

Creating the Interface Definition Language (IDL)

Note: This section assumes that you’re using the CORBA development style to

create a stateless CORBA object application (approach 1 in “Developing

stateless CORBA objects” on page 361, rather than the RMI-IIOP approach).

The RMI-IIOP approach is described in “Developing an RMI-IIOP stateless

CORBA application” on page 369.

If you’re using the CORBA development style to create a stateless CORBA object

application, your first step will be to create an OMG IDL file that contains the

definitions of interfaces the server implementation will support. An OMG IDL file

describes the data-types, operations, and objects that the client can use to make a

request, and that a server must provide for an implementation of a given object.

For information about writing IDL, see the OMG publication, Common Object

Broker: Architecture and Specification, obtainable from the OMG web site at

http://www.omg.org/

You process the IDL definitions with an IDL-to-Java compiler (sometimes called a

“parser” or “generator”). You must use a compiler provided by the server

environment to generate server-side skeletons and helper classes, and a compiler

provided by the client environment to generate client-side stub (sometimes called

“proxy”) and helper classes. Skeleton classes appropriate for use with CICS can be

created using the IDLJ compiler provided with any IBM Java 2 SDK. If you use a

non-IBM IDLJ compiler, the resulting skeleton class may or may not be suitable for

use with CICS. If in doubt, you may use the IDLJ compiler that ships with the Java

SDK supplied on z/OS that is used by CICS.

The stub or proxy classes produced by the IBM IDL compiler (IDLJ) are appropriate

for use with any IBM ORB. If you use a client-side ORB from a different vendor (for

example, Sun MicroSystems or Borland) you should use the IDL compiler supplied

with that ORB. If you use stub classes generated for one vendor’s ORB with

another vendor’s ORB, the results are undefined—the stubs may or may not work.

The proxies and skeletons provide the object-specific information needed for an

ORB to distribute a method invocation.

Figure 39 on page 365 shows how the same IDL file is used to generate different

classes used by the client and the server.

364 Java Applications in CICS

Developing an IIOP server program

Note: This section assumes that you’re using the CORBA development style to

create a stateless CORBA object application (approach 1 in “Developing

stateless CORBA objects” on page 361, rather than the RMI-IIOP approach).

The RMI-IIOP approach is described in “Developing an RMI-IIOP stateless

CORBA application” on page 369.

The server program can be developed on any platform that supports Java. For

example, an NT workstation, AIX or the UNIX System Services environment of

z/OS. The following steps are required:

1. Write the IDL definition of the interfaces and operations that form your

application.

2. Compile the IDL file to generate CORBA skeleton and helper classes, using the

IDL compiler idlj command which is part of the Java 2 SDK.

Note:

a. You must use an IBM-supplied IDL-to-Java compiler to do this. The

IDL-to-Java compiler supplied with the Sun version of the Java 2

SDK may not be 100% compatible with the IBM ORB.

Client
Application

Generated
by
IDL
Compiler

Client
Orb

Generated
by
IDL
Compiler

Server
Orb

Server
Application

File
Source
Definition
Interface

Figure 39. IDL and generated code

Chapter 27. Stateless CORBA objects 365

b. The idlj command is not supplied as part of the Java Runtime

Environment (JRE); you will need a full SDK installed on your

machine before this will work.

The IDL compiler can be invoked as follows:

idlj [options] <idl file>

Where <idl file> is the name of the file containing the IDL definitions, and

[options] is any combination of the following options, which may appear in any

order. <idl file> is required and must appear last. At least -f must be

specified.

For example:

 idlj -v -fall myidl.idl

If you are using a version of the IDL compiler from Java 1.4, you must also

specify the -oldImplBase option to ensure that a CICS-compatible

implementation is generated. If you do not use this option, the generated

implementation will use the Portable Object Adapter (POA), which is not

supported in CICS. For example:

 idlj -v -fall -oldImplBase myidl.idl

-d<symbol>

The equivalent of the following line in an IDL file: #define <symbol>

-emitAll

Emit all types, including those found in #included files.

-f<side>

Define the bindings to emit. <side> can be:

client not applicable to CICS.

server does not generate sufficient classes for normal use.

all emits all bindings.

serverTIE

not supported in CICS.

allTIE not supported in CICS

If this option is not specified, then -fclient is assumed. In most cases

you should use -fall.

-i<include path>

Add another directory. By default, the current directory is scanned for

included files.

-keep If a file to be generated already exists, do not overwrite it. By default it

is overwritten.

-oldImplBase

Required if you are using the version of the IDLJ compiler supplied with

Java 1.4 SDK. If you omit this option, IDLJ generates code which uses

the Portable Object Adapter (POA). The POA is not supported under

CICS.

-pkgPrefix <t> <pkg>

Make sure that wherever the type or module <t> is encountered, it

resides within <pkg> in all generated files. <t> is a fully qualified

Java-style name.

366 Java Applications in CICS

-v Verbose mode.

3. Write your server implementation in Java code. The idl compiler will generate an

abstract class called_interfacenameImplBase. Your program must extend this. If

objects of this type are to be created by the Generic Factory, your

implementation class must be called _interfacenameImpl. If you do not use this

naming convention, the GenericFactory will not be able to create references to

your CORBA object. For example:

public class _BankAccountImpl extends _BankAccountImplBase

Your implementation class may make use of the JCICS API to interact with

traditional CICS services.

4. Compile your program and the output from step 2, using the javac compiler or

an equivalent, such as VisualAge for Java. Ensure that the location of the

output files is added to the end of the CICS shared application classpath,

ibm.jvm.shareable.application.class.path, in the JVM properties file.

IDL example

The following example describes a bank account whose contents can be queried

and updated. Note that this example has a parameter that identifies the instance of

the BankAccount, to satisfy the ’stateless’ restriction. The following IDL defines the

interface and operations:

 module bank {

 // this interface is used to manage the bank accounts

 interface BankAccount {

 exception ACCOUNT_ERROR { long errcode; string message;};

 // query methods

 long querybalance(in long acnum) raises (ACCOUNT_ERROR);

 string queryname(in long acnum) raises (ACCOUNT_ERROR);

 string queryaddress(in long acnum) raises (ACCOUNT_ERROR);

 // setter methods

 void setbalance(in long acnum, in long balance) raises (ACCOUNT_ERROR);

 void setaddress(in long acnum, in string address) raises (ACCOUNT_ERROR);

};

};

In this example, the module name is bank, the interface name is BankAccount and

the Operations are querybalance, and setbalance.

Server implementation

The server implementation of the above IDL must be called _BankAccountImpl if

objects of this type are to be created by the GenericFactory and must extend

 _BankAccountImplBase, which is generated by the IDL compiler. It is part of the

Java package bank. You can see full details of this implementation in the stateless

CORBA BankAccount sample application distributed in :

 /usr/lpp/cicsts/<username>/samples/dfjcorb

where username is a name you can choose during CICS installation, defaulting to

cicsts31.

Resource definition for example

You must have:

v A TCPIPSERVICE resource defined and installed to listen on a given port under

CICS. This TCPIPSERVICE must be:

Chapter 27. Stateless CORBA objects 367

– Defined to use the IIOP protocol.

– In “open” state in order to receive requests.

v A CORBASERVER resource defined to process IIOP requests on the

TCPIPSERVICE.

You may optionally choose to add a REQUESTMODEL definition, in order to force

the request to be processed under a given TRANSID.

Developing the IIOP client program

Note: This section assumes that you’re using the CORBA development style to

create a stateless CORBA object application (approach 1 in “Developing

stateless CORBA objects” on page 361, rather than the RMI-IIOP approach).

The RMI-IIOP approach is described in “Developing an RMI-IIOP stateless

CORBA application” on page 369.

1. Process the IDL file with an IDL- to-Java compiler suitable for your client system

(using the same IDL file that you used to build the server application).

2. Obtain a stringified object reference to the GenericFactory by downloading

genfac.ior (in ASCII mode) from the CorbaServer’s shelf directory, where it was

created when the CORBASERVER resource was published. Alternatively, you

can use JNDI, as a Generic Factory IOR for the CorbaServer is published to the

namespace if you issue an EXEC CICS PERFORM CORBASERVER PUBLISH,

or a CEMT PERFORM CORBASERVER PUBLISH command. If you plan to use

JNDI, then you must define a nameserver, see “Defining name servers” on page

168. The IOR is bound into the context identified by the JNDI prefix in the

CORBASERVER resource definition, with the name GenericFactory. For

example, the pathname would be:

/jndiprefix/GenericFactory

See the CICS Resource Definition Guide and the CICS Supplied Transactions

manual .

3. Write your client program, containing calls to the server. To obtain an initial

object reference, use the GenericFactory as shown in “Client example.”

4. Compile the client program, and the output from step1, with javac or an

equivalent compiler.

Client example

The following example shows how the GenericFactory service is used by a client

program to create an account object. The client must first create a proxy for the

GenericFactory.

Java bindings for part of the CORBA CosLifeCycle and CosNaming modules are

required. If they are not provided by the client ORB, you can build them using the

client ORB’s IDL-to-Java compiler, from the CORBA services IDL available from the

OMG website (www.omg.org). Alternatively, you can use the precompiled Java

version of the IDL provided in

/usr/lpp/cicsts/<cicsts31>/lib/omgcos.jar

Where cicsts31 is your chosen value for the USSDIR installation parameter that you

defined when you installed CICSTS.

The JAR file should be downloaded in binary mode and made available on the

client’s CLASSPATH environment entry.

368 Java Applications in CICS

The following example, and the supplied samples, require bindings that can be

imported as org.omg.CosNaming and org.omg.CosLifeCycle.

In order to create an account object, the client must first create a proxy for the

GenericFactory. The following example assumes that a stringified reference to the

GenericFactory exists in a file available to a client, and is returned by the

getFactoryIOR() method.

import java.io.*;

import org.omg.CORBA.*;

import org.omg.CosLifeCycle.*;

import org.omg.CosNaming.*;

public class bankLineModeClient{

//The following method reads the ior from a file and returns it in the string

 String factoryIOR = getFactoryIOR();

// Turn the stringified reference into the proxy

 org.omg.CORBA.Object genFacRef = orb.string_to_object(factoryIOR);

// narrow to correct interface

 GenericFactory fact = GenericFactoryHelper.narrow(genFacRef);

Now that the client has a generic factory, it can use it to create an account object.

// The Generic factory needs a key, which is a sequence of namecomponents

 NameComponent nc = new NameComponent("bank::BankAccount","object interface");

 NameComponent key[] = {nc};

//The Generic factory also requires criteria (which it ignores)

 NVP mycriteria[] = {};

//Now create the object

 org.omg.CORBA.Object objRef = fact.create_object(key, mycriteria);

// and narrow to correct interface

BankAccount acctRef = BankAccountHelper.narrow(objRef);

Now the client has an object, it can use it:

int ac1 = 1234; // Tony’s account

int ac2 = 3456; // Lou’s account

String name;

String address;

int balance;

try {

 name=acctRef.queryname(ac1);

 System.out.println("a/c num:"+ac1+" name:"+name);

}

catch (exception e) {

 System.err.println("query error");

}

Note: NVP (Name Value Pair) is a datatype defined in the CORBA IDL for the

Generic Factory interface.

Developing an RMI-IIOP stateless CORBA application

This section tells you how to use the RMI-IIOP development style to create a

stateless CORBA object application (approach 2 in “Developing stateless CORBA

objects” on page 361, rather than the CORBA development approach described in

previous sections).

Chapter 27. Stateless CORBA objects 369

The RMI-IIOP approach involves developing a standard Java Remote Method

Invocation (RMI) application and deploying it to use IIOP as its transport protocol.

This is the approach taken by enterprise beans.

Note: This section specifically documents how to develop a stateless CORBA

application using RMI-IIOP. Enterprise beans are deployed using other tools,

such as the Assembly Toolkit (ATK). For information about deploying

enterprise beans, see Chapter 21, “Deploying enterprise beans,” on page

291.

When using RMI-IIOP there is no need to define an interface using IDL—though, if

required, the IDL can optionally be generated later. Instead, we start by defining at

least one remote interface. Note that, in this context, a “remote interface” means

any Java interface that extends java.rmi.Remote. This is not the same thing as an

enterprise bean’s “Remote Interface”. Using the terminology just defined, both an

enterprise bean’s Remote Interface and its Home Interface would qualify as “remote

interfaces”, because they both ultimately extend java.rmi.Remote.

This remote interface should be coded to follow the rules of Java RMI. An example

remote interface is shown below:

package hello;

public interface HelloWorldRMI extends java.rmi.Remote

{

 public String sayHello(String msgFromClient) throws java.rmi.RemoteException;

}

The above interface defines a single method called sayHello that takes a String as

a parameter and returns a String. All the methods on the interface must be defined

to throw java.rmi.RemoteException.

Next, you should provide a server-side implementation of this interface. An example

is shown below:

package hello;

public class _HelloWorldRMIImpl implements HelloWorldRMI

{

 public String sayHello(String msgFromClient)

 { return "Hello: You said: " + msgFromClient;}

}

The implementation class implements the interface previously created. The naming

convention used for the implementation class is _<interface name>Impl. This

naming convention is required if the server object is to be located using the CORBA

CosLifeCycle Generic Factory approach. If you do not use this naming convention,

the Generic Factory will not be able to construct instances of your stateless CORBA

object.

One of the advantages of RMI-IIOP over the more traditional IDL-based

development process is that you are not forced to extend a base class. This means

that you can chose to use your own inheritance hierarchy if you wish. You may also

implement multiple remote interfaces with a single server object.

You should compile both of the above classes using the javac compiler or

equivalent.

The next thing to do is to produce the server-side Tie file for this stateless CORBA

object. This is done using the RMI compiler (RMIC). You must use an RMI compiler

370 Java Applications in CICS

shipped with an IBM Java 2 SDK. If you use the version of RMIC supplied with a

Sun MicroSystems’ Java 2 SDK, the generated Tie file is not guaranteed to work

with the CICS ORB.

The command to use is as follows:

 rmic -iiop hello._HelloWorldRMIImpl

Note that RMIC is being run against the server-side implementation class.

Next we need the client-side stub class. This is also produced using the RMI

compiler. Ensure that you use an appropriate RMI compiler for your client ORB. The

command to use is as follows:

rmic -iiop hello.HelloWorldRMI

Note that RMIC is being run against the remote interface class.

Once this is complete, you should have the following classes available:

hello\HelloWorldRMI.class - the remote interface

hello_HelloWorldRMIImpl.class - the stateless CORBA object

hello__HelloWorldRMIImpl_Tie.class - the RMI-IIOP server side Tie file

hello_HelloWorldRMI_Stub.class - the RMI-IIOP client side Stub file

The next thing to do is to write the client application. The client application is very

similar to the client application developed using the IDL-based approach to CORBA

development (described in “Developing the IIOP client program” on page 368). As

before, we still need to find a reference to the stateless CORBA object using the

CORBA CosLifeCycle Generic Factory. Here is part of an example RMI-IIOP client

application:

ORB orb = ORB.init((String[]) null, (java.util.Properties) null);

// The following method reads the generic factory IOR from a file and returns

// it in the string

String factoryIOR = getFactoryIOR();

// Turn the stringified reference into the proxy

org.omg.CORBA.Object genFacRef = orb.string_to_object(factoryIOR);

// narrow to correct interface

GenericFactory fact = GenericFactoryHelper.narrow(genFacRef);

// The Generic factory needs a key, which is a sequence of namecomponents

NameComponent nc = new NameComponent("hello::HelloWorldRMI","object interface");

//Now create the object

org.omg.CORBA.Object objRef=fact.create_object(new NameComponent[]{nc},

 new NVP[] {});

// and narrow to correct interface using the RMI-IIOP narrow operation

HelloWorldRMI remote = (HelloWorldRMI) javax.rmi.PortableRemoteObject.narrow

 (objRef, HelloWorldRMI.class);

// Invoke the remote method

System.out.println("Received from Server: "+remote.sayHello("Hi!")+"\n");}

As with the IDL-based client application, it will be necessary to have the omgcos.jar

file from the CICS lib HFS directory on your workstation and client machines in

order to find the CosLifeCycle classes.

All that remains is to package the server- and client-side applications into JAR files

and to add the server-side JAR file to the CICS shareable application class path.

Chapter 27. Stateless CORBA objects 371

If you want to generate IDL, for the RMI-IIOP remote interface, that would be

suitable for use with a non-Java-based CORBA client application, use the following

command:

rmic -idl hello.HelloWorldRMI

Stand-alone CICS CORBA client applications

In this section, the term “stand-alone CICS CORBA client applications” refers to

CICS applications that:

1. Are CORBA client applications

2. Are defined to CICS as standard Java applications, by means of a PROGRAM

definition on which JVM=YES specified

3. Create an ORB instance using the new operator

4. Do not run in a CICS CorbaServer execution environment

CICS CORBA support is primarily focused on supporting IIOP server-side

objects—that is, enterprise beans and stateless CORBA objects. These server-side

components run in a CICS EJB/CORBA server, in a CorbaServer execution

environment represented by a CORBASERVER resource. Because they run in a

CICS EJB/CORBA server, they have access to a rich ORB feature set.

Stand-alone CICS CORBA client applications do not run in a CICS EJB/CORBA

server, and thus do not have access to the same quality of CORBA support as

server-side components. The ORB available to these client applications is a

client-only ORB sometimes referred to as the “JCICS ORB”. This ORB cannot listen

on a socket for inbound connections; therefore any IORs published by this ORB

cannot be supported. Similarly, a CICS CORBA client application cannot initiate (or

participate in) a distributed OTS transaction.

These limitations do not extend to the CICS server ORB environment. Any server

object in a CICS EJB/CORBA server can make outbound client IIOP calls that

participate in an OTS transaction, providing that the ORB instance used to perform

these outbound calls is the current CICS EJB/CORBA server ORB. If a new ORB

instance is created by the server object using the new operator, CICS cannot

automatically propagate the existing transaction context using this new ORB. An

IIOP server object can programmatically get a handle to the current server ORB

instance by using the following static method call:

com.ibm.cics.iiop.ORBFactory.getORB()

CORBA interoperability

The CICS implementation of the CORBA architecture provides a link between

applications based on CORBA ORBs and CICS services, including enterprise

beans. An enterprise bean hosted by CICS can be made to inter-operate with

objects on other CICS regions (including back-level CICS regions from CICS TS 1.3

onwards), WebSphere Application Server, and third-party J2EE application servers

and ORBs. Enterprise beans are available to pure CORBA clients, and can act as

clients to remote CORBA objects (potentially implemented in a different

programming language and hosted on a different platform).

The CICS ORB can be used to host only client and server applications written in

Java. However, it can be used to interoperate with remote ORBs which serve

clients and servers written in other programming languages.

372 Java Applications in CICS

Using non-Java CORBA clients

Different programming languages require different language bindings to an ORB.

This requires a level of interoperability between the ORBs which should be taken

into consideration. The CORBA architecture defines language bindings for a number

of languages, including C++, Java, COBOL, Ada, PL/I, Smalltalk, and others. Note

that language bindings for some programming languages might not support all IDL

and IIOP features. In particular, valuetypes have been defined only for the C++ and

Java language bindings. CORBA access to enterprise beans requires valuetypes,

so today only C++ and Java applications can access most enterprise beans through

a CORBA interface.

Writing a CORBA client to an enterprise bean

For client programming languages other than Java, such as C++, the CORBA

architecture is often the only viable option for accessing enterprise beans.

Enterprise beans are available to CORBA clients through the CORBA programming

model as follows:

v Write the enterprise bean.

v Generate IDL for the enterprise bean, using the RMI compiler with the -IDL

option. (This is the reverse of the typical CORBA model, in which IDL is used to

generate the object.)

Serializable objects used in the bean interfaces will be expressed in IDL as

CORBA valuetypes. If you use only CORBA primitives as data and return types,

it will be easier to access the bean from non-Java clients.

v Using an IDL compiler suitable for the client environment, compile the IDL to

generate client-side stubs.

v Write the client, using the generated stub.

v Make an IOR for the enterprise bean available to the client application. The IOR

contains sufficient information for any CORBA ORB to locate the enterprise bean.

Even if a session bean has been coded to use only CORBA primitives as parameter

and return types, exception types are still returned as CORBA valuetypes. If your

CORBA client ORB does not support valuetypes, you will be forced to work with

unknown exceptions.

Note: It is not recommended to use a Java CORBA client to an enterprise bean.

Use RMI-IIOP instead.

Enterprise beans as CORBA clients

Enterprise beans are Java objects operating in a sophisticated runtime environment

which includes an ORB. If the enterprise bean is to make outbound IIOP calls to

remote CORBA objects (without using RMI-IIOP) it is strongly recommended that

the application make use of the existing ORB instance. If the enterprise bean

creates a new ORB instance using the new operator, CICS cannot propagate the

existing transaction and security context under which the bean is running to method

requests on this new ORB.

If you need to get a handle to the current ORB from within an enterprise bean you

can use the following static method call:

com.ibm.cics.iiop.ORBFactory.getORB()

Chapter 27. Stateless CORBA objects 373

Code sets

CICS can accept GIOP char/wchar and string/wstring datatypes only if they are

encoded using one of the following codepages:

v UCS2—the standard Java codeset (Unicode)

v UTF-8

374 Java Applications in CICS

Chapter 28. Migrating IIOP applications from CICS TS 1.3

CICS implemented an enhanced CORBA ORB in CICS TS for z/OS, Version 2. This

means that, if you have existing CICS TS OS/390, Version 1.3 IIOP applications,

you can exploit some new function but you will also need to make some changes to

the applications, or to the execution environment.

You need to make the following changes:

Environment

CICS replaced dfjcorb.jar with dfjorb.jar in CICS TS for z/OS, Version 2. See

Chapter 14, “Configuring CICS for IIOP,” on page 167 for more information

about setting up your environment.

Resource definition

CORBASERVER

You now need to provide and install a CORBASERVER resource

definition to define and initialize the execution environment for the IIOP

application. Note that the installation of a CORBASERVER is a phased

process that may complete at some time after the install is initiated. You

can use INQUIRE CORBASERVER commands to verify that the

CORBASERVER has installed correctly. See the CICS Resource

Definition Guide for more information about the CORBASERVER

resource definition.

REQUESTMODEL

You need to make some changes to the REQUESTMODEL resource

definition. You should use the MODULE, INTERFACE, and

OPERATION attributes instead of the OMGMODULE,

OMGINTERFACE, and OMGOPERATION attributes, which continue to

be supported for migration purposes only. New fields are added to

identify the related CORBASERVER and to support Enterprise beans.

 Generic pattern matching has been changed to allow only zero or more

characters followed by a ’*’. In cases where several different generic

patterns match a given string, there is now a simple rule for choosing

the most specific match. The longest generic pattern results in the most

specific match. See the CICS Resource Definition Guide for more

information about the REQUESTMODEL resource definition.

TCPIPSERVICE

The new PROTOCOL parameter of the TCPIPSERVICE resource

definition for the IIOP port must be set to IIOP.

 If you are using the Domain Name System (DNS) connection

optimization, you now need to define a groupname in the DNSGROUP

parameter. In CICS TS 1.3, DNS was active for all TCPIPSERVICEs

with names beginning with ’D’. This is now replaced by use of the

DNSGROUP and GRPCRITICAL TCPIPSERVICE parameters. See

“Domain Name System (DNS) connection optimization” on page 160 for

more information about using DNS.

 There are new SSL options. See “Authentication of IIOP requests” on

page 163 for more information about the use of SSL. See the CICS

Resource Definition Guide for more information about the

TCPIPSERVICE resource definition.

© Copyright IBM Corp. 1999, 2006 375

PROGRAM

All IIOP programs must now be defined as JVM programs. You will

need to modify existing PROGRAM definitions to add the JVM ,

JVMCLASS, and JVMPROFILE options. See the CICS Resource

Definition Guide for more information about the PROGRAM resource

definition.

Files

You will need to provide and define a DFHEJDIR and a DFHEJOS file. These

must be defined and available before any CORBASERVERs are installed. See

Chapter 14, “Configuring CICS for IIOP,” on page 167 for more information

about setting up your IIOP environment.

Security URM

You need to change any IIOP security user-replaceable programs to support the

new and changed fields in the updated COMMAREA structure. The URM is now

called only if it is specified in the TCPIPSERVICE definition for the IIOP port. It

is no longer possible to update the transaction identifier from the URM. The

sample DFHXOPUS is still supplied. See “Obtaining a CICS user ID” on page

189 for more information about supplying a URM

IDL

CICS does not provide the dfjcidl.jar file in CICS TS for z/OS, Version 3.1.

Instead, you can use the pre-compiled IDL in the omgcos.jar file:

v CosNaming

v CosTransactions

v CosLifeCycle

Alternatively, you can use the idlj compiler from the SDK to generate Java

statements from IDL.

GenFacIOR

The offline GenFacIOR utility is no longer needed. You should use the

PERFORM CORBASERVER PUBLISH command to publish the

CORBASERVER resource definition defining the execution environment for this

IIOP request. PUBLISH causes a stringified IOR (called genfac.ior) of the

GenericFactory class to be created and stored on the shelf (an HFS directory

associated with the CorbaServer), and published to the nameserver. You can

download the IOR to your client workstation from the shelf using ftp, or your

client can use the JNDI interface to obtain the IOR from the nameserver. All

existing stringified IOR files need to be recreated. For more information, see

“Defining name servers” on page 168.

IIOP messages > 32K

In CICS TS 1.3, CICS used temporary storage to pass IIOP messages larger

than 32k to the request processor, and you needed to define TSMODELS for

temporary storage queue prefixes DFIO and DFJO. The request streams logic

manages these messages in a different way in CICS TS for z/OS, Version 2

and later, and these TS queues are no longer needed.

JVM

IIOP applications execute in the JVM. CICS Transaction Server for z/OS,

Version 3 Release 1 does not provide runtime support for applications that have

been processed by the VisualAge for Java, Enterprise Edition for OS/390

bytecode binder (hpj) to run as Java program objects in CICS. You will need to

set up the JVM environment as described in Chapter 9, “Setting up Java

support,” on page 53, and define your programs as JVM programs.

376 Java Applications in CICS

|
|
|
|
|
|
|

Chapter 29. Using the IIOP samples

The following sample applications demonstrate the use of IIOP applications

(stateless CORBA objects) and the CICS Java programming support (JCICS):

HelloWorld sample

 This sample provides a simple test of the IIOP components. The client program:

 v reads the file genfac.ior to obtain a reference to the generic factory

v uses the generic factory to create a HelloWorld object

v invokes method sayHello to send a greeting to the server (Hello from

HelloWorldClient)and receive a greeting from it in reply (Hello from CICS TS)

The design of the application is described in comments in the code.

BankAccount sample

 The sample consists of the following main parts:

1. A traditional CICS application that uses BMS and the EXEC CICS API,

written in C. This application consists of two transactions:

BNKI Initializes a file with information about a number of bank accounts.

These accounts have numbers in the range 23 through 30.

BNKQ Queries the information in the accounts. There is also a CICS

program, DFH$IICC, which performs a credit check for an account.

2. An implementation of an IDL interface that defines a bank account object.

The implementation is written in Java and runs as a stateless CORBA

object. This implementation uses the bank account file to access bank

account information and the DFH$IICC credit check program to obtain credit

ratings.

3. A CORBA client application written in Java that displays information about

bank account objects.

The design of the application is described in comments in the code.

This chapter describes the samples and tells you how to run them. The following

topics are covered:

Setting up the IIOP sample environment

To configure CICS as an IIOP server or client, you need to set up the following host

software environment:

v A z/OS system, Version 2.8 or later, with UNIX Systems Services and HFS

v Language Environment configured and active

v CICS

v The IBM Software Developer Kit for z/OS, Java 2 Technology Edition, Version

1.4.2. This is available from :

http://www.s390.ibm.com/java

Then follow these steps to set up the IIOP environment:

 1. Define the following JCL parameter in the start-up jobstream for a CICS region

that supports IIOP:

© Copyright IBM Corp. 1999, 2006 377

REGION

1000M minimum is recommended

 2. Define the following system initialization parameters in the start-up jobstream

for a CICS region that supports IIOP:

EDSALIM

500M minimum is recommended

MAXJVMTCBS

Specify the number of JVMs that your CICS region can support. The

CICS Performance Guide tells you how to work out an appropriate

setting for the MAXJVMTCBS system initialization parameter.

TCPIP YES

 3. Add the following DD statements to the start-up jobstream for a CICS region

that supports IIOP, and create these files:

DFHEJDIR

A recoverable shared file containing the request streams directory. This

can be a VSAM file or a coupling facility data table. CICS supplies

sample JCL to help you create this file, in the DFHDEFDS member of

the SDFHINST library.

DFHEJOS

A non-recoverable shared file used by CICS when CORBASERVERS

are installed and to store stateful session beans that have been

passivated. This can be a VSAM file or a coupling facility data table.

CICS supplies sample JCL to help you create this file, in the

DFHDEFDS member of the SDFHINST library.

Sample local VSAM data set definitions for these files are provided in the

CICS-supplied RDO group DFHEJVS. These data sets must be authorized

with RACF for UPDATE access. See the CICS RACF Security Guide.

 4. Create a shelf directory on HFS and give the CICS region userid full access

to it. See “Giving CICS regions access to z/OS UNIX System Services and

HFS directories and files” on page 53 for guidance.

 5. Choose a suitable JVM profile and JVM properties file and ensure that CICS is

able to locate them, as described in “Setting up JVM profiles and JVM

properties files” on page 94.

 6. Ensure that the following environment variables are correctly defined in the

JVM profile for the server side application:

CICS_HOME

The installation directory prefix of CICS TS:

 /usr/lpp/cicsts/cicsts31/

where cicsts31 is your chosen value for the USSDIR installation

parameter that you defined when you installed CICS TS.

JAVA_HOME

The installation directory prefix of the SDK. This is:

 /usr/lpp/java142/J1.4/

where java142/J1.4 is defined when you install the IBM Software

Developer Kit for z/OS, Java 2 Technology Edition, Version 1.4.2.

 7. Ensure that the following files are added to a suitable class path in the JVM

profile or JVM properties file:

v

378 Java Applications in CICS

The sample Java source and makefiles that are stored in the z/OS UNIX

System Services HFS during CICS installation, in the following directories:

– $CICS_HOME/samples/dfjcorb/HelloWorld

– $CICS_HOME/samples/dfjcorb/BankAccount

v The location where you have compiled the classes for the server side

applications.

“Adding application classes to the class paths for a JVM” on page 128 tells

you how to do this.

 8. Ensure that the CICS-supplied resource definition groups DFHIIOP and

DFH$IIOP are installed. Do this by including the groups in DFHLIST before

starting CICS or by using the CEDA option INSTALL to install the resources in

CICS whilst it is running. See the CICS Supplied Transactions for information

about using CEDA to install resource definitions.

The supplied group DFH$IIOP contains:

v Resource definitions required for the TCP/IP listener region (which may

also be the same region that runs the sample programs):

– SSL TCPIPSERVICE definition

– NOSSL TCPIPSERVICE definition

v Resource definitions required for the HelloWorld sample:

– IIHE TRANSACTION definition

– DFJIIRH REQUESTMODEL definition

– IIOP CORBASERVER definition

v Resource definitions required for the BankAccount sample:

– DFH$IIBI PROGRAM definition

– DFH$IIBQ PROGRAM definition

– DFH$IICC PROGRAM definition

– BANKINQ MAPSET definition

– BNKI TRANSACTION definition

– BNKQ TRANSACTION definition

– BNKS TRANSACTION definition

– BANKACCT FILE definition

– DFJIIRB REQUESTMODEL definition

– IIOP CORBASERVER definition

The TCPIPSERVICE and IIOP CORBASERVER definitions refer to the default

port numbers, 683 and 684. You may need to change these to port numbers

that are available to you. Also, the IIOP definition refers to CICSHOST as the

host of the corbaserver. You will need to change this to your own host name.

See the CICS Resource Definition Guide for information about TCIPSERVICE

and CORBASERVER resource definitions..

 9. Translate and compile the following CICS C language programs and mapset

and include them in a library in the CICS DFHRPL concatenation. They are

stored in SDFHSAMP during CICS installation. The order of compilation is

important. Both DFH$IIBI and DFH$IICC can be compiled independently, but

the BMS mapset DFH$IIMA must be compiled before compiling DFH$IIBQ.

See the CICS Application Programming Guide for guidance on translating,

compiling and linking CICS application programs.

The file DFH$IIMA contains one mapset BANKINQ with two maps. Compile

and link the mapset BANKINQ.

See the CICS Application Programming Guide for guidance on compiling and

linking BMS maps.

Chapter 29. Using the IIOP samples 379

DFH$IIBI

C program that initializes the BANKACCT file. Run by the BNKI

transaction.

DFH$IIBQ

C program that queries the accounts held in BANKACCT.

DFH$IICC

C program that performs a credit check. This is called by DFH$IIBQ.

DFH$IIMA

BMS mapset BANKINQ.

Note: In the names of sample programs and files described in this book, the

dollar symbol ($) is used as a national currency symbol and is assumed

to be assigned the EBCDIC code point X’5B’. In some countries a

different currency symbol, for example the pound symbol (£), or the yen

symbol (¥), is assigned the same EBCDIC code point. In these

countries, the appropriate currency symbol should be used instead of

the dollar symbol.

10. To compile the IIOP HelloWorld client you require the CosLifeCycle and

CosNaming runtime classes. If your client ORB environment does not provide

these services ready-built you can use the omgcos.jar file shipped in the

$CICS_HOME/lib directory. Alternatively, you may choose to build these

classes from the original OMG supplied IDL. In this case a copy of the relevant

IDL files is available in $CICS_HOME/samples/dfjcorb. The process of turning

pure IDL into executable code is ORB dependent, but if you are using an ORB

supplied with a JVM then it is likely that the following commands will work:

 idlj -pkgprefix CosNaming org.omg -pkgprefix CosLifeCycle org.omg -fall CosLifeCycle.idl

 idlj -pkgprefix CosNaming org.omg -pkgprefix CosLifeCycle org.omg -fall CosNaming.idl

 javac org\omg\CosLifeCycle*.java org\omg\CosNaming\NamingContextPackage*.java

 org\omg\CosNaming*.java

You must ensure that these classes are available on your classpath

environment variable when you attempt to build any CICS stateless CORBA

client application.

11. Obtain a genfac.ior file containing an object reference to your server’s generic

factory, and place it in the current directory. The genfac.ior file is created

when you issue a PERFORM CORBASERVER PUBLISH command for the

installed sample IIOP CORBASERVER resource definition. It is written to the

CORBASERVER’s shelf directory:

/var/cicsts/applid/IIOP

where applid is the APPLID identifier associated with the CICS region.

You can use the CICS CEMT master terminal command (see the CICS

Supplied Transactions) to issue the PERFORM command, or you can issue the

EXEC CICS PERFORM command (see the CICS System Programming

Reference) from a CICS application.

You can download the IOR to your client workstation (in ascii mode) from the

shelf using ftp.

380 Java Applications in CICS

Running the IIOP HelloWorld sample

This section tells you what you need to do to run the HelloWorld sample

application. It covers the following topics:

v “Building the server side HelloWorld application”

v “Building the client side HelloWorld application”

v “Running the HelloWorld sample application” on page 382

Building the server side HelloWorld application

The makefile in $CICS_HOME/samples/dfjcorb/HelloWorld/server builds everything

required for the server side application.

$CICS_HOME/samples/dfjcorb/HelloWorld/server should be added to the end of the

class path, ibm.jvm.shareable.application.class.path, in the default JVM

properties file, dfjjvmcd.props.

To build the programs, enter the following command from $CICS_HOME/samples/
dfjcorb/HelloWorld/server:

make

This makes the HelloWorld object.

Building the client side HelloWorld application

$CICS_HOME/samples/dfjcorb/HelloWorld/client contains the CORBA client part of

the application. The source of the Java client application is called

HelloWorldClient.java. This application should run with any CORBA-compliant

ORB.

The following steps are required to build the Java client application:

1. Download the following files to the client workstation (in ASCII mode):

v .../dfjcorb/HelloWorld/HelloWorld.idl

v .../dfjcorb/HelloWorld/client/HelloWorldClient.java

2. Compile the provided IDL with the client ORB’s IDL-to-Java compiler to produce

the Java client side stubs required by the sample application. These stubs will

be created in a sub-directory called hello. Move the client application

HelloWorldClient.java into this sub-directory.

3. Compile the client application, ensuring that the Java classes produced in the

previous step are available through the CLASSPATH environment variable. To

compile the client application from the current directory, enter:

javac hello\HelloWorldClient.java

You will also need the CosLifeCycle and CosNaming runtime classes. If your

client ORB environment does not provide these services ready built then you

can use the omgcos.jar file shipped in the $CICS_HOME/lib directory on HFS.

Alternatively you may choose to build these classes from the original

OMG-supplied IDL. In this case a copy of the relevant IDL files is available in

$CICS.HOME/samples/dfjcorb/.

The process of turning pure IDL into executable code is ORB-dependent, but if

you are using an ORB supplied with a JVM then it is likely that the following

commands will work:

Chapter 29. Using the IIOP samples 381

idlj -pkgprefix CosNaming org.omg -pkgprefix CosLifeCycle org.omg -fall CosLifeCycle.idl

 idlj -pkgprefix CosNaming org.omg -pkgprefix CosLifeCycle org.omg -fall CosNaming.idl

 javac org\omg\CosLifeCycle*.java

 org\omg\CosNaming\NamingContextPackage*.java

 org\omg\CosNaming*.java

These classes must be in your classpath when you attempt to build any CICS

stateless CORBA client application.

Running the HelloWorld sample application

Run the client application using:

java hello.HelloWorldClient

Running the IIOP BankAccount sample

This section tells you what you need to do to run the BankAccount sample

application. It covers the following topics:

v “Building the server side BankAccount application”

v “Building the client side BankAccount application”

v “Running the BankAccount sample application” on page 383

Creating the VSAM file

Define the VSAM file to hold the bank account data, using the following IDCAMS

parameters:

DEFINE CLUSTER (-

 NAME (CICS610.BANKACCT) -

 CYLINDERS(01) -

 REUSE -

 KEYS(4 0) -

 RECORDSIZE(168 168))

Building the server side BankAccount application

The makefile in $CICS_HOME/samples/dfjcorb/BankAccount/server builds

everything required for the CORBA part of the server side application.

$CICS_HOME/samples/dfjcorb/BankAccount/server should be added to the end of

the class path, ibm.jvm.shareable.application.class.path, in the default JVM

properties file, dfjjvmcd.props.

To build the programs, enter the following command from $CICS_HOME/samples/
dfjcorb/BankAccount/server:

make

This makes the Java server program that implements the bank account object.

Building the client side BankAccount application

$CICS_HOME/samples/dfjcorb/BankAccount/javaclient contains the CORBA client

part of the application. The source of the Java client application is called

bankLineModeClient.java. This application should run with any CORBA-compliant

ORB.

The following steps are required to build the Java client application:

382 Java Applications in CICS

1. Download the following files to the client workstation (in ascii mode):

v .../dfjcorb/BankAccount/BankAccount.idl

v .../dfjcorb/BankAccount/javaclient/bankLineModeClient.java

2. Compile the provided IDL with the client ORB’s IDL-to-Java compiler to produce

the Java client side stubs required by the sample application. After compiling the

IDL to create the sub-directory, bank, move the java file into this sub-directory.

Then, this can be compiled from the current directory, as follows:

javac bank\bankLineModeClient.java

3. Ensure that the Java classes produced in the previous step are available

through the CLASSPATH environment variable.

You will also need the CosLifeCycle and CosNaming runtime classes. If your

client ORB environment does not provide these services ready built then you

can obtain them in the same way as in “Building the client side HelloWorld

application” on page 381.

Running the BankAccount sample application

The following steps are required to run the sample application:

1. Run the BNKI CICS transaction to load data into the account file.

2. Run the client application using:

java bank.bankLineModeClient

Chapter 29. Using the IIOP samples 383

384 Java Applications in CICS

Part 7. Appendixes

© Copyright IBM Corp. 1999, 2006 385

386 Java Applications in CICS

Bibliography

The CICS Transaction Server for z/OS library

The published information for CICS Transaction Server for z/OS is delivered in the

following forms:

The CICS Transaction Server for z/OS Information Center

The CICS Transaction Server for z/OS Information Center is the primary source

of user information for CICS Transaction Server. The Information Center

contains:

v Information for CICS Transaction Server in HTML format.

v Licensed and unlicensed CICS Transaction Server books provided as Adobe

Portable Document Format (PDF) files. You can use these files to print

hardcopy of the books. For more information, see “PDF-only books.”

v Information for related products in HTML format and PDF files.

One copy of the CICS Information Center, on a CD-ROM, is provided

automatically with the product. Further copies can be ordered, at no additional

charge, by specifying the Information Center feature number, 7014.

 Licensed documentation is available only to licensees of the product. A version

of the Information Center that contains only unlicensed information is available

through the publications ordering system, order number SK3T-6945.

Entitlement hardcopy books

The following essential publications, in hardcopy form, are provided

automatically with the product. For more information, see “The entitlement set.”

The entitlement set

The entitlement set comprises the following hardcopy books, which are provided

automatically when you order CICS Transaction Server for z/OS, Version 3 Release

1:

 Memo to Licensees, GI10-2559

 CICS Transaction Server for z/OS Program Directory, GI10-2586

 CICS Transaction Server for z/OS Release Guide, GC34-6421

 CICS Transaction Server for z/OS Installation Guide, GC34-6426

 CICS Transaction Server for z/OS Licensed Program Specification, GC34-6608

You can order further copies of the following books in the entitlement set, using the

order number quoted above:

 CICS Transaction Server for z/OS Release Guide

 CICS Transaction Server for z/OS Installation Guide

 CICS Transaction Server for z/OS Licensed Program Specification

PDF-only books

The following books are available in the CICS Information Center as Adobe

Portable Document Format (PDF) files:

CICS books for CICS Transaction Server for z/OS

General

 CICS Transaction Server for z/OS Program Directory, GI10-2586

 CICS Transaction Server for z/OS Release Guide, GC34-6421

 CICS Transaction Server for z/OS Migration from CICS TS Version 2.3,

GC34-6425

© Copyright IBM Corp. 1999, 2006 387

CICS Transaction Server for z/OS Migration from CICS TS Version 1.3,

GC34-6423

 CICS Transaction Server for z/OS Migration from CICS TS Version 2.2,

GC34-6424

 CICS Transaction Server for z/OS Installation Guide, GC34-6426
Administration

 CICS System Definition Guide, SC34-6428

 CICS Customization Guide, SC34-6429

 CICS Resource Definition Guide, SC34-6430

 CICS Operations and Utilities Guide, SC34-6431

 CICS Supplied Transactions, SC34-6432
Programming

 CICS Application Programming Guide, SC34-6433

 CICS Application Programming Reference, SC34-6434

 CICS System Programming Reference, SC34-6435

 CICS Front End Programming Interface User’s Guide, SC34-6436

 CICS C++ OO Class Libraries, SC34-6437

 CICS Distributed Transaction Programming Guide, SC34-6438

 CICS Business Transaction Services, SC34-6439

 Java Applications in CICS, SC34-6440

 JCICS Class Reference, SC34-6001
Diagnosis

 CICS Problem Determination Guide, SC34-6441

 CICS Messages and Codes, GC34-6442

 CICS Diagnosis Reference, LY33-6110

 CICS Data Areas, LY33-6107

 CICS Trace Entries, SC34-6443

 CICS Supplementary Data Areas, LY33-6108
Communication

 CICS Intercommunication Guide, SC34-6448

 CICS External Interfaces Guide, SC34-6449

 CICS Internet Guide, SC34-6450
Special topics

 CICS Recovery and Restart Guide, SC34-6451

 CICS Performance Guide, SC34-6452

 CICS IMS Database Control Guide, SC34-6453

 CICS RACF Security Guide, SC34-6454

 CICS Shared Data Tables Guide, SC34-6455

 CICS DB2 Guide, SC34-6457

 CICS Debugging Tools Interfaces Reference, LY33-6109

CICSPlex SM books for CICS Transaction Server for z/OS

General

 CICSPlex SM Concepts and Planning, SC34-6459

 CICSPlex SM User Interface Guide, SC34-6460

 CICSPlex SM Web User Interface Guide, SC34-6461
Administration and Management

 CICSPlex SM Administration, SC34-6462

 CICSPlex SM Operations Views Reference, SC34-6463

 CICSPlex SM Monitor Views Reference, SC34-6464

 CICSPlex SM Managing Workloads, SC34-6465

 CICSPlex SM Managing Resource Usage, SC34-6466

 CICSPlex SM Managing Business Applications, SC34-6467
Programming

 CICSPlex SM Application Programming Guide, SC34-6468

 CICSPlex SM Application Programming Reference, SC34-6469

388 Java Applications in CICS

Diagnosis

 CICSPlex SM Resource Tables Reference, SC34-6470

 CICSPlex SM Messages and Codes, GC34-6471

 CICSPlex SM Problem Determination, GC34-6472

CICS family books

Communication

 CICS Family: Interproduct Communication, SC34-6473

 CICS Family: Communicating from CICS on System/390, SC34-6474

Licensed publications

The following licensed publications are not included in the unlicensed version of the

Information Center:

 CICS Diagnosis Reference, LY33-6110

 CICS Data Areas, LY33-6107

 CICS Supplementary Data Areas, LY33-6108

 CICS Debugging Tools Interfaces Reference, LY33-6109

Other CICS books

The following publications contain further information about CICS, but are not

provided as part of CICS Transaction Server for z/OS, Version 3 Release 1.

 Designing and Programming CICS Applications SR23-9692

CICS Application Migration Aid Guide SC33-0768

CICS Family: API Structure SC33-1007

CICS Family: Client/Server Programming SC33-1435

CICS Transaction Gateway for z/OS Administration SC34-5528

CICS Family: General Information GC33-0155

CICS 4.1 Sample Applications Guide SC33-1173

CICS/ESA 3.3 XRF Guide SC33-0661

Books from related libraries

This section lists the non-CICS books that are referred to in this manual.

 IBM Developer Kit and Runtime Environment, Java 2 Technology Edition,

Version 1.4.2 Diagnostics Guide, SC34-6358

 Persistent Reusable Java Virtual Machine User’s Guide, SC34-6201

Determining if a publication is current

IBM regularly updates its publications with new and changed information. When first

published, both hardcopy and BookManager® softcopy versions of a publication are

usually in step. However, due to the time required to print and distribute hardcopy

books, the BookManager version is more likely to have had last-minute changes

made to it before publication.

Subsequent updates will probably be available in softcopy before they are available

in hardcopy. This means that at any time from the availability of a release, softcopy

versions should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the

Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each

reissue of the collection kit is indicated by an updated order number suffix (the -xx

Bibliography 389

part). For example, collection kit SK2T-0730-06 is more up-to-date than

SK2T-0730-05. The collection kit is also clearly dated on the cover.

Updates to the softcopy are clearly marked by revision codes (usually a #

character) to the left of the changes.

390 Java Applications in CICS

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS system

in one of these ways:

v using a 3270 emulator logged on to CICS

v using a 3270 emulator logged on to TSO

v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features

for people with disabilities. You can use this product to provide the accessibility

features you need in your CICS system.

Some accessibility features may not be available when using the Application

Assembly Tool (AAT), which is a component of WebSphere Application Server. You

should consult the documentation that comes with WebSphere Application Server to

determine which accessibility features are available when using AAT.

© Copyright IBM Corp. 1999, 2006 391

392 Java Applications in CICS

Index

A
abend codes, EJB 327

access control lists (ACLs) 56

accessing databases 41

allocation of JVMs 79

application assembler, of EJB application 213

application programs, Java 17

application-class system heap 69

assertions 101

authentication, of IIOP requests 163

autostart for shared class cache 111

B
bean provider 212

bean-managed entity beans 208

big COMMAREAs 24

C
CCI Connector for CICS TS

benefits 310

data conversion 315

installation 315

messages 322

migration 322

overview 307

problem determination 322

publishing a ConnectionFactory to a JNDI

namespace 317

requirements 315

retracting a ConnectionFactory from a JNDI

namespace 318

sample programs
CICSConnectionFactoryPublish 317

CICSConnectionFactoryRetract 318

installing 316, 320

overview 316

trace points 322

using 312

CEEPIPI Language Environment preinitialization

module 68

channels
creating 25

JCICS support 24

channels as large COMMAREAs 24

CICS Development Deployment Tool
messages 326

CICS JVM messages 326

CICS key for Java programs 72, 76, 127

CICS Web support
HFS permissions 53, 54, 56

CICSConnectionFactoryPublish, sample program for the

CCI Connector for CICS TS 317

CICSConnectionFactoryRetract, sample program for the

CCI Connector for CICS TS 318

CICSPlex SM support for enterprise beans
BAS definitions 351

introduction 351

class paths for JVM 65, 90, 128

class types in JVM 64

class version issues with RMI-IIOP 330

CLASSCACHE JVM profile option 109

CLASSCACHE_MSGLOG JVM profile option 107

client example, IIOP 368

code sets, used on GIOP requests 374

com.ibm.cics.samples.SJMergedStream 137

com.ibm.cics.samples.SJTaskStream 137

COMMAREAs > 32K 24

Common Client Interface
ECI resource adapter 309

framework classes 308

input/output classes 308

J2EE Connector architecture 307

component interface, of enterprise beans 205

connection optimization, DNS 160

connectors
background information 307

CCI Connector for CICS TS 307

the Common Client Interface 307

container plugin, for debugging Java applications 148

container-managed entity beans 208

containers
creating 25

JCICS support 24

continuous JVM 86

programming considerations 121

storage heaps 70

CORBA 153

class paths in JVM 67, 131

debug plugin 148

exceptions 328

interoperability
code sets 374

enterprise beans as CORBA clients 373

using non-Java CORBA clients 373

writing a CORBA client to an enterprise

bean 373

the Object Request Broker 153

cross-heap references 87

logging 123

removing 124

CSJE transient data queue 137

CSJO transient data queue 137

D
Data Access beans

described 42

DB2 access from JVMs 101

DebugControl interface, for debugging Java

applications 147

debugging
in the JVM 142

© Copyright IBM Corp. 1999, 2006 393

debugging (continued)
Java applications 142, 327

deployed security roles 342

deployer, of EJB application 213

deploying enterprise beans 214, 291

deployment tools 292

deployment tools 292

developing an RMI-IIOP stateless CORBA

application 369

DFHEJDIR, EJB request streams directory file 157,

183, 221, 340

DFHEJDNX user-replaceable module 340

DFHEJOS, EJB passivated session beans file 183,

221, 340

DFHJVMAT 88, 92, 103, 127

DFHJVMCC JVM profile 98, 108

DFHJVMCD JVM profile 95, 98, 100, 103

DFHJVMPC JVM profile 97

DFHJVMPR JVM profile 95, 97, 100

DFHJVMPS JVM profile 97

DFHXOPUS, user-replaceable IIOP security

program 165, 191

dfjejbpl.policy, enterprise beans security policy 337

diagnostic services
JVM trace 327

distinguished names
deriving 340

obtaining 340

DNS (Domain Name System) connection optimization
name resolution 161

name resolution problems 163

registration 160

resource definition 162

Domain Name System (DNS) connection

optimization 160

E
ECI resource adapter 309

EJB “Hello World” sample application
installation

on CICS 255

on the Web application server 256

prerequisites 254

supplied components 254

testing 257

what it does 253

EJB abend codes 327

EJB Bank Account sample application
installation

on the Web application server 270

on z/OS 268

prerequisites 262

supplied components 263

testing 271

what it does 261

EJB client messages 328

EJB container 204

EJB Installation Verification Program
installation 248

on CICS 248

EJB Installation Verification Program (continued)
installation (continued)

on z/OS UNIX System Services 249

introduction 247

prerequisites 247

running 250

EJB server 204

EJBROLE, RACF security role generator utility 347

EJCOBEAN, CICSPlex SM inquiry on enterprise beans

directly associated with a CorbaServer 353

EJCODEF, BAS CorbaServer definition 351

EJCOSE, CICSPlex SM inquiry on CorbaServer

instances 353

EJDJAR, CICSPlex SM inquiry on CICS-deployed JAR

file instances 353

EJDJBEAN, CICSPlex SM inquiry on enterprise beans

directly associated with a DJAR 353

EJDJDEF, BAS CICS-deployed JAR file definition 351

enterprise beans
as CORBA clients 373

benefits 225

CICSPlex SM support 351

class paths in JVM 67, 131

client program 281

component interface 205

configuring CICS server 216

deployment 214

deployment checklist 277

deployment descriptor 206, 345

deployment tools 292

deriving distinguished names 340

described 203

EJB container 204

EJB server 204

entity beans
bean-managed 208

comparison with session beans 209

container-managed 208

described 208

primary key 208

environment 206

errors and messages 326

example pseudocode 223

execution key 72

file access permissions 339

home interface 205

in a sysplex 217

JVM profiles 98

managing transactions 210

overview 202

problem determination
class version issues with RMI-IIOP 330

EJB client runtime diagnostics 328

EJB server runtime diagnostics 326

set-up problems 325

PROGRAM resource definition 120

requesting use of a JVM 74

requirements 226

sample programs
EJB “Hello World” application 253

EJB Bank Account application 261

394 Java Applications in CICS

enterprise beans (continued)
sample programs (continued)

for CCI Connector for CICS TS 311

introduction 253

security 211, 338

security policy 337

security roles 338

defining to RACF 349

implementing 347

RACF EJBROLE generator utility 347

session beans
code example 278

comparison with entity beans 209

described 207

stateful 208

stateless 208

writing 278

set-up problems 325

setting up a logical EJB server 219

setting up an EJB server 229

multi-region 237

single-region 229

testing the server 236

updating beans in a production region
solutions 298

the problem 295

use of Data Access beans 42

user tasks
application assembler 213

bean provider 212

deployer 213

system administrator 213

using a debugger 145

workload balancing 218

writing 277

writing a CORBA client to an enterprise bean 373

Enterprise Java domain messages 326

entity beans
bean-managed 208

comparison with session beans 209

container-managed 208

described 208

primary key 208

errors and exceptions
JCICS 18

example programs
IIOP client 368

Interface Definition Language (IDL) 367

example pseudocode, for EJB clients 223

examples
Java client program that contructs and uses a

channel 27

execution key for JVMs 72, 76, 127

shared class cache 90

F
file access permissions

for CICS enterprise beans 339

G
GenFacIOR migration 376

GID for UNIX System Services access for JVMs 54

group identifier (GID) for z/OS UNIX 54

H
HFS access 53, 56

home interface, of enterprise beans 205

I
ibm.dg.trc.external 141

IDL (Interface Definition Language) 364

IIOP
application models 154

applications 153, 361

authentication 163

BankAccount sample 382

client development procedure 368

client example 368

connection authentication 165

developing an IIOP server program 365

DFHXOPUS program 191

DFJIIRP program 158

DNS connection optimization 159, 160

dynamic routing 194

enterprise beans 154

HelloWorld sample 381

IDL 364

in a sysplex 159

Interface Definition Language (IDL) example 367

locateRequest 158

message fragments 158

message processing 157

MessageError 158

messages>32k 376

migrating from CICS TS 1.3 375

obtaining a USERID 189

programming model 361

request flow 157

request message 157

request receiver 157

REQUESTMODEL processing 192, 193

sample applications 377

sample program components 377

stand-alone CICS CORBA client applications 372

stateless CORBA objects 154

TCP/IP listener 157

TCP/IP Listener 180

TCPIPSERVICE 180

the ORB 153

user-replaceable security program,

DFHXOPUS 165

workload balancing of requests 159

Initial Process Thread (IPT) 125

Interface Definition Language (IDL) 364

example 367

Index 395

J
J2EE Connector architecture

the Common Client Interface 307

J2EE resource adapter architecture
ECI resource adapter 309

J8 TCBs 75

J9 TCBs 75

Java 2 security manager 100, 334

Java debug interface, JDI 143

Java debug wire protocol, JDWP 143

Java Platform Debugger Architecture, JPDA 143

Java programming in CICS
accessing databases 41

Data Access beans 42

debugging 327

enabling applications to use a JVM 119

enterprise beans
benefits 225

component interface 205

deployment 214, 292

deployment descriptor 206

described 203

EJB container 204

EJB server 204, 216

entity beans 208

environment 206

example pseudocode 223

home interface 205

managing transactions 210

overview 202

requirements 226

security 211

session beans 207

setting up an EJB server 219

user tasks 212

JavaBeans
described 203

using JCICS 17

classes 18

command arguments 19

errors and exceptions 18

interfaces 18

JavaBeans 17

JCICS command reference 21

JCICS library structure 18

PrintWriter 20

serializable classes 19

storage requirements 19

System.err 20

System.out 20

threads 20

translation 17

Java programming using JCICS
introduction 17

Java virtual machine debug interface, JVMDI 143

java.compiler system property for JVMs 124

java.lang.OutOfMemory error in worker JVM 113

java.net classes 125

Java2 Security 333

JavaBeans
described 203

Javadoc 363

JCICS
ABEND handling 21

abnormal termination 23

ADDRESS 28

APPC 24

BMS 24

browsing the current channel 26

CANCEL command 34

channel sample 43

channels and containers 24

class library 17

classes 18

command arguments 19

command reference 21

COMMAREA sample 43

condition handling 23

creating channels 25

creating containers 25

creating objects 39

DEQ command 34

diagnostic services 27

DOCUMENT services 27

ENQ command 34

error handling 23

errors and exceptions 18

example program 27

exception handling 21

exception mapping 37

file control 30

getting data from a container 26

HANDLE commands 22

INQUIRE SYSTEM 30

INQUIRE TASK 30

INQUIRE TERMINAL or NETNAME 30

interfaces 18

JavaBeans 17

Javadoc 363

library structure 18

PrintWriter 20

program control 33

receiving the current channel 26

resource definitions 18

RETRIEVE command 34

sample programs
Hello World samples 43

installing 44

Program Control samples 43

resource definition 46

running 46

TDQ transient data sample 43

TSQ temporary storage sample 44

Web sample 44

serializable classes 19

START command 34

storage requirements 19

storage services 34

System.err 20

System.out 20

temporary storage 34

terminal control 35

396 Java Applications in CICS

JCICS (continued)
translation 17

unsupported CICS services 37

UOWs 36

using objects 39

using threads 20

Web services 36

writing the main method 39

JDBC 101

JDI, Java debug interface 143

JDWP, Java debug wire protocol 143

JIT compiler 68

and shared class cache 112

JPDA, Java Platform Debugger Architecture 143

JVM 53, 63, 93

allocation to programs 79

browsing 78

class paths 65, 128

for shared class cache 90

library path 66, 129

shareable application 66, 130

standard (CLASSPATH) 67, 130

trusted middleware 66, 130

classes 64

application 65

middleware 64

system, or primordial 64

continuous 86

creating 71

DB2 access 101

debug interface, JVMDI 143

debugging 139, 142

DFHJVMAT 92, 103, 127

discarding 78, 134

enabling applications to use 119

execution key 72, 76, 90, 127

installation 98

Java debug interface, JDI 143

Java debug wire protocol, JDWP 143

Java Platform Debugger Architecture, JPDA 143

JDBC 101

JIT-compiling 68

JVM pool 75, 132

JVM profiles 73, 94

JVMCCPROFILE system initialization

parameter 109

JVMCCSIZE system initialization parameter 107,

112

JVMCCSTART system initialization parameter 111

JVMCLASS 127

JVMPROFILEDIR system initialization parameter 95

JVMxxxxTRACE system initialization

parameters 140

Language Environment enclave 68, 70

level of reusability 85

level supported 63

managing 75, 132

MAXJVMTCBS system initialization parameter 76,

132

messages 139, 326

middleware 64, 66, 130

JVM (continued)
migration 92

mismatches and steals 79

monitoring 132

output redirection 101, 135

samples 137

plugins, for debugging Java applications 146

problem determination 139, 142, 327

PROGRAM resource definition 71, 74, 119, 126

programming considerations 121, 123, 125

reset process 87

resettable 87

selection mechanism 84

setting up 53

shared class cache 89

single-use 88, 103

statistics 132, 139

storage heaps 68, 69, 101

application-class system heap 69

middleware heap 69

nonsystem heap 69

system heap 69

transient heap 69

storage monitor 76

structure 64

support for assertions 101

support for older types 64, 92

supported in CICS TS 1.3 88

TCBs 75

threads 125

trace 327

tracing 139, 140

UNIX System Services and HFS access 53, 56

unresettable events 87, 123

using 93

z/OS shared library region 68

JVM pool 75, 79

browsing 78

disabling or terminating 78, 134

managing 132

monitoring 132

JVM profile directory 95

JVM profile options
appropriate for master JVM 107

appropriate for worker JVM 110

CLASSCACHE_MSGLOG, messages from master

JVM 107

CLASSCACHE, become worker JVM 109

for debugging 144

REUSE 85, 99

STDERR, output 135

STDOUT, output 135

USEROUTPUTCLASS, output redirection 101, 135

WORK_DIR, work directory 101

Xmx, storage heaps 101

Xquickstart, obsolete 73

JVM profiles 73

and level of reusability 99

and shared class cache 99

case considerations 94

choosing 96

Index 397

JVM profiles (continued)
creating 105

customizing 100, 102

DFHJVMCC 98, 108

DFHJVMCD 95, 98, 100, 103

DFHJVMPC 97

DFHJVMPR 95, 97, 100

DFHJVMPS 97

Java 2 security 100

JVMPROFILEDIR 95

locating 94

monitoring 134

options available 102

PROGRAM resource definition 127

samples supplied by CICS 96

setting up 94

statistics 134

JVM properties files 73

case considerations 94

choosing 96

creating 105

customizing 102

locating 94, 96

options available 102

security of 102

setting up 94

JVM storage heaps
during reset 87

JVM system properties 73, 94

appropriate for master JVM 108

appropriate for worker JVM 110

java.compiler 124

JVMCCPROFILE system initialization parameter 109

JVMCCSIZE system initialization parameter 107, 112

JVMCCSTART system initialization parameter 111

JVMCLASS attribute 127

JVMDI, Java virtual machine debug interface 143

JVMPROFILE attribute 127

JVMPROFILEDIR system initialization parameter 95

JVMxxxxTRACE system initialization parameters 140

L
large COMMAREAs 24

launcher program for JVMs 71

level of reusability for JVMs 85

load balancing, of IIOP requests 158

logical EJB server
described 217

setting up 219

a multi-region server 237

a single-region server 229

testing the server 236

M
master JVM 89

and class paths 90, 129

CLASSCACHE_MSGLOG JVM profile option 107

execution key 90

JVM profile 96, 107

master JVM (continued)
JVM system properties 108

level of reusability 108

messages 118

semaphore requirements 107

MAXJVMTCBS system initialization parameter 76, 132

MAXPROCUSER parameter for UNIX System

Services 55

messages
CCI Connector for CICS TS 322

CICS Development Deployment Tool 326

EJB client 328

enterprise bean 326

Enterprise Java domain 326

JVM 326

middleware for JVMs 64, 66, 130

middleware heap 69

migration
CCI Connector for CICS TS 322

of IIOP applications from CICS TS 1.3 375, 376

performing a rolling upgrade of an EJB/CORBA

server 242

upgrading a multi-region CICS EJB/CORBA

server 241

upgrading a single-region CICS EJB/CORBA

server 240

mismatch 79

N
non-Java CORBA clients 373

nonsystem heap 69

O
ORB function 158

OTS transaction 157

output redirection 101, 135

samples 137

P
performing a rolling upgrade of an EJB/CORBA

server 242

permissions (system access privileges) 334

Plugin interface, for debugging Java applications 147

plugins
in CICS JVM

container plugin 148

DebugControl interface 147

introduction 146

Plugin interface 147

wrapper plugin 148

plus 32K COMMAREAs 24

primary key, entity beans 208

problem determination
enterprise beans

class version issues with RMI-IIOP 330

EJB client runtime diagnostics 328

EJB server runtime diagnostics 326

set-up problems 325

398 Java Applications in CICS

problem determination for JVMs 139, 142

PROGRAM resource definition for Java programs 71,

74, 119, 126

publishing a ConnectionFactory to a JNDI namespace
CCI Connector for CICS TS 317

R
RACF definitions

to configure CICS for security 340

RACF security role generator utility, EJBROLE 347

redirecting output from JVMs 101, 135

samples 137

request stream 157

REQUESTMODEL
examples 194

IIOP processing 192

pattern matching 193

reset trace events
logging 123

resettable JVM 87

programming considerations 123

resource definitions
for DNS connection optimization 162

for JCICS 18

for JCICS sample programs 46

retracting a ConnectionFactory from a JNDI namespace
CCI Connector for CICS TS 318

reusability for JVMs 85

REUSE JVM profile option 85, 99

RMI-IIOP, class version issues 330

S
sample JVM profiles 96

sample programs
CCI Connector for CICS TS

CICSConnectionFactoryPublish 317

CICSConnectionFactoryRetract 318

installing 316

overview 316

EJB “Hello World” sample
installation 255

prerequisites 254

supplied components 254

testing 257

what it does 253

EJB Bank Account sample
installation 268

prerequisites 262

supplied components 263

testing 271

what it does 261

EJB IVP
installation 248

introduction 247

prerequisites 247

running 250

JCICS
Hello World samples 43

installing 44

sample programs (continued)
JCICS (continued)

Program Control samples 43

resource definition 46

running 46

TDQ transient data sample 43

TSQ temporary storage sample 44

Web sample 44

secure sockets layer (SSL) 211

security manager
applying a security policy 334

enabling a security policy 334

security role generator utility, EJBROLE 347

security, of enterprise beans
access to data sets 340

deployed security roles 342

deriving distinguished names 340

file access permissions 339

introduction to 333

Java 2 security policy 333

security manager
applying a security policy 334

enabling a security policy 334

security roles 338

defining to RACF 349

implementing 347

RACF EJBROLE generator utility 347

specifying security policy files to apply to all

JVMs 336

supplied enterprise beans policy file 337

selection mechanism for JVMs 84

serializable classes, JCICS 19

session beans
comparison with entity beans 209

described 207

stateful 208

stateless 208

shared class cache 89

autostart 111

class paths 129

contents 89

defining 96, 107

enabling JVMs to use 109

JVMs unsuitable for sharing 89

level of reusability 108

managing 110

monitoring 118

reloading 113

size, adjusting 112

starting 111

terminating 116

updating classes or JAR files 113

shared library region 68

single-use JVM 88, 103

programming considerations 125

storage heaps 70

sockets 125

stand-alone CICS CORBA client applications 372

standalone JVM 89

updating classes 114

stateful session beans 208

Index 399

stateless CORBA objects
developing 361

developing an IIOP client program 368

developing an IIOP server program 365

developing an RMI-IIOP stateless CORBA

application 369

IDL 364

obtaining an IOR 363

overview 361

stateless session beans 208

statistics for JVM profiles 134

statistics for JVM programs 134

statistics for JVMs 132, 139

STDERR JVM profile option 135

STDOUT JVM profile option 135

steal 79

storage monitor for MVS storage 76

system access privileges (permissions) 334

system heap 69

system initialization parameters for JVMs
JVMCCPROFILE 109

JVMCCSIZE 107, 112

JVMCCSTART 111

JVMPROFILEDIR 95

JVMxxxxTRACE 140

MAXJVMTCBS 76, 132

T
TCBs for JVMs 75, 76

TCP/IP Listener 180

TCPIPSERVICE resource 180

threads 125

trace points
CCI Connector for CICS TS 322

JVM 327

tracing for JVMs 139, 140

transient data queues CSJO and CSJE 137

transient heap 69

U
UID for UNIX System Services access for JVMs 54

UNIX System Services access 56

UNIX System Services access for JVMs 53

access control lists (ACLs) 56

MAXPROCUSER considerations 55

unresettable events 87

logging 123

reason codes 124

upgrading a multi-region CICS EJB/CORBA server 241

upgrading a single-region CICS EJB/CORBA

server 240

user identifier (UID) for z/OS UNIX 54

user key for Java programs 72, 76, 127

USEROUTPUTCLASS JVM profile option 101, 135

W
WORK_DIR JVM profile option 101

worker JVM 89

worker JVM (continued)
and class paths 90, 129

becoming a worker JVM 109

CLASSCACHE JVM profile option 109

execution key 90

java.lang.OutOfMemory error 113

JVM profile 96, 109

level of reusability 108

terminating 117

workload balancing
of IIOP requests 159

wrapper plugin, for debugging Java applications 148

writing a CORBA client to an enterprise bean 373

X
Xjvmset 89

Xmx JVM profile option 101

Xquickstart JVM profile option 73

Z
z/OS shared library region 68

400 Java Applications in CICS

Notices

This information was developed for products and services offered in the U.S.A. IBM

may not offer the products, services, or features discussed in this document in other

countries. Consult your local IBM representative for information on the products and

services currently available in your area. Any reference to an IBM product, program,

or service is not intended to state or imply that only that IBM product, program, or

service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However,

it is the user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

 For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore this statement may not apply to

you.

This publication could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact IBM United Kingdom Laboratories,

MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such

information may be available, subject to appropriate terms and conditions, including

in some cases, payment of a fee.

© Copyright IBM Corp. 1999, 2006 401

The licensed program described in this document and all licensed material available

for it are provided by IBM under terms of the IBM Customer Agreement, IBM

International Programming License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks, or registered trademarks, of International

Business Machines Corporation in the United States, or other countries, or both:

 ACF/VTAM IBM RACF

AIX IMS SecureWay

BookManager Language Environment System/390

CICS MVS VisualAge

CICS Connection OS/2 WebSphere

CICSPlex OS/390 z/OS

DB2 Parallel Sysplex

UNIX is a registered trademark in the United States and other countries licensed

exclusively through X/Open Company Limited.

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and other countries.

Microsoft, Windows, and Windows NT, are trademarks of Microsoft Corporation in

the United States, or other countries, or both

Other company, product, and service names may be trademarks or service marks

of others.

402 Java Applications in CICS

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the

methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on

the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the

information is presented.

To ask questions, make comments about the functions of IBM products or systems,

or to request additional publications, contact your IBM representative or your IBM

authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate, without incurring any

obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

User Technologies Department (MP095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire

SO21 2JN

United Kingdom

v By fax:

– From outside the U.K., after your international access code use

44–1962–816151

– From within the U.K., use 01962–816151

v Electronically, use the appropriate network ID:

– IBMLink™: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1999, 2006 403

404 Java Applications in CICS

���

Program Number: 5655-M15

SC34-6440-03

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

C
IC

S
Tr

an
sa

ct
io

n
Se

rv
er

fo

r
z/

O
S

Ja
va

Ap

pl
ic

at
io

ns

in

C

IC
S

Ve
rs

io
n

3
R

el
ea

se

1

	Contents
	Preface
	What this information is about
	Who should read this information

	Summary of Changes
	Changes for CICS Transaction Server for z/OS, Version 3 Release 1
	Changes for CICS Transaction Server for z/OS, Version 2 Release 3
	Changes for CICS Transaction Server for z/OS, Version 2 Release 2

	Part 1. Java development roadmaps
	Chapter 1. JCICS application roadmap
	Chapter 2. CICS IIOP application roadmap
	Chapter 3. CICS enterprise beans roadmap
	Part 2. Developing Java applications for CICS
	Chapter 4. Java applications in CICS
	Types of Java application in CICS

	Chapter 5. What you need to know about CICS
	CICS transactions
	CICS tasks
	CICS application programs
	CICS services

	Chapter 6. Java programming using JCICS
	The JCICS class library
	Translation
	JavaBeans
	Library structure
	CICS resources
	CICS storage requirements
	Command arguments
	Serializable classes
	System.out and System.err
	Threads

	JCICS command reference
	CICS exception handling in Java programs
	CICS error-handling commands
	CICS conditions

	Error handling and abnormal termination
	APPC mapped conversations
	Basic Mapping Support (BMS)
	Channels and containers
	Creating channels and containers in JCICS
	Putting data into a container
	Passing a channel to another program or task
	Receiving the current channel
	Getting data from a container
	Browsing the current channel
	A JCICS example

	Diagnostic services
	Document services
	Environment services
	ADDRESS
	ASSIGN
	INQUIRE SYSTEM
	INQUIRE TASK
	INQUIRE TERMINAL and INQUIRE NETNAME

	File services
	Program services
	Scheduling services
	Serialization services
	Storage services
	Temporary storage queue services
	Terminal services
	Transient data queue services
	Unit of work (UOW) services
	Web and TCP/IP services
	Unsupported CICS services

	JCICS exception mapping
	Using JCICS
	Writing the main method
	Creating objects
	Using objects

	Chapter 7. Accessing data from CICS applications written in Java
	Using Data Access beans

	Chapter 8. Using the JCICS sample programs
	Building the JCICS sample programs
	Building the Java samples
	Defining CICS resources

	Running the JCICS samples
	Running the Hello World samples
	Running the Program Control samples
	Running the TDQ sample
	Running the TSQ sample
	Running the web sample

	Part 3. Setting up Java support and JVMs
	Chapter 9. Setting up Java support
	Giving CICS regions access to z/OS UNIX System Services and HFS directories and files
	Giving CICS regions a z/OS UNIX user identifier (UID) and group identifier (GID) and setting up a home directory
	Giving CICS regions permission to access HFS directories and files

	Verifying the Java installation using sample programs

	Chapter 10. Understanding JVMs
	The structure of a JVM
	Classes in a JVM
	Compiled classes

	Where a JVM is constructed
	JVMs and the z/OS shared library region
	Storage heaps in a JVM

	How CICS creates JVMs
	Execution key (EXECKEY attribute)
	JVM profiles (JVMPROFILE attribute)
	How CICS locates the PROGRAM resource definition to create a JVM

	How CICS manages JVMs in the JVM pool
	How CICS allocates JVMs to applications
	How CICS deals with incoming requests for a JVM
	How CICS deals with a queue of requests waiting for a JVM
	The selection mechanism

	How JVMs are reused
	Continuous JVMs (REUSE=YES)
	Resettable JVMs (REUSE=RESET)
	Single-use JVMs (REUSE=NO)

	The shared class cache
	Removal of support for CICS Transaction Server for OS/390, Version 1 Release 3 JVMs

	Chapter 11. Using JVMs
	Setting up JVM profiles and JVM properties files
	Enabling CICS to locate the JVM profiles and JVM properties files
	Locating the JVM profiles
	Locating the JVM properties files

	Choosing a JVM profile and JVM properties file
	Setting a level of reusability
	Changes that you could make

	Customizing or creating JVM profiles and JVM properties files
	Customizing DFHJVMCD
	Customizing the supplied sample JVM profiles and JVM properties files
	Creating your own JVM profiles and JVM properties files

	Setting up the shared class cache
	Defining the shared class cache
	Enabling JVMs to use the shared class cache

	Managing the shared class cache
	Starting the shared class cache
	Adjusting the size of the shared class cache
	Updating classes or JAR files in the shared class cache
	Terminating the shared class cache
	Monitoring the shared class cache

	Enabling applications to use a JVM
	Programming for different types of JVM
	Programming considerations for continuous JVMs
	Programming considerations for resettable JVMs
	Programming considerations for single-use JVMs
	Threads and sockets in Java applications for CICS

	Setting up a PROGRAM resource definition for a Java program to run in a JVM
	Adding application classes to the class paths for a JVM
	Including CORBA stateless objects and enterprise beans on the shareable application class path

	Managing your JVMs
	Monitoring JVM activity
	Monitoring the JVM pool
	Monitoring JVMs in the JVM pool
	Monitoring the use of JVM profiles
	Monitoring JVM programs

	Terminating or disabling the JVM pool
	Redirecting JVM output
	The CICS-supplied sample classes com.ibm.cics.samples.SJMergedStream and com.ibm.cics.samples.SJTaskStream

	Problem determination for JVMs
	Controlling tracing for JVMs
	Debugging an application that is running in a CICS JVM
	Attaching a debugger to a CICS JVM
	The CICS JVM plugin mechanism

	Part 4. CICS and IIOP
	Chapter 12. IIOP support in CICS
	The Object Request Broker (ORB)
	CICS IIOP application models
	Some common CORBA terminology

	Chapter 13. The IIOP request flow
	IIOP in a sysplex
	Workload balancing of IIOP requests
	Domain Name System (DNS) connection optimization
	Connection optimization registration
	Name resolution example
	Resource definition for DNS connection optimization
	Avoiding Domain Name System (DNS) problems

	Authentication of IIOP requests
	The IIOP user-replaceable security program
	CONNECTION authentication

	Chapter 14. Configuring CICS for IIOP
	Setting up the host system for IIOP
	Defining a shelf directory
	Defining name servers
	Enabling JNDI references
	Specifying the location of the JNDI name server

	Setting up an LDAP server
	If you have an existing LDAP server configured for WebSphere
	Reasons for further configuration

	Configuring a new LDAP server
	An example

	Determining the values for the system properties and adding them to your JVM properties files

	The LDAP namespace structure
	The container root
	The legacy root
	Domains
	Nodes
	Security considerations
	Security at the containerdn level
	Security at the CICS region level

	Setting up a COS Naming Directory Server
	Setting up TCP/IP for IIOP
	Using DNS connection optimization

	Setting up CICS for IIOP
	Defining CICS start-up jobstream
	Specifying the RECORDSIZE of DFHEJDIR and DFHEJOS

	Defining CICS resources

	Chapter 15. Processing IIOP requests
	Obtaining a CICS user ID
	Using the IIOP user-replaceable security program
	Using DFHXOPUS

	Obtaining a CICS TRANSID
	Pattern matching
	Name-mangling of the OPERATION field
	REQUESTMODEL examples
	Dynamic routing

	Name mangling for Java
	Why mangling is necessary for Java names
	How Java names are mangled
	How mangling affects CICS

	Handling IIOP diagnostics

	Part 5. Using enterprise beans
	Chapter 16. What are enterprise beans?
	Enterprise beans—the big picture
	JavaBeans and Enterprise JavaBeans
	Components
	JavaBeans
	Enterprise JavaBeans

	The EJB server—overview
	The EJB container—overview
	The execution environment

	Enterprise beans—the home and component interfaces
	Enterprise beans—the deployment descriptor
	The EJB server: summary
	Types of enterprise bean
	Session beans
	Stateful session beans
	Stateless session beans

	Entity beans
	Session beans and entity beans compared

	Enterprise beans—managing transactions
	Enterprise beans—security overview
	Authentication
	Access control
	Security roles
	CICS transaction and resource security

	The Java 2 security manager

	Enterprise beans—user tasks
	The bean provider
	The application assembler
	The deployer
	The system administrator

	Deploying enterprise beans—overview
	Configuring CICS as an EJB server—overview
	Logical servers—enterprise beans in a sysplex
	Workload balancing in a sysplex

	Setting up a logical EJB server

	Enterprise beans—what can a client do with a bean?
	Get a reference to the bean's home
	Use the home interface
	Use the component interface

	Enterprise beans—what can a bean do?
	Benefits of EJB technology
	Requirements for EJB support
	Hardware
	Software

	Chapter 17. Setting up an EJB server
	Setting up a single-region EJB server
	Before running the EJB IVP
	Actions required on z/OS or Windows NT
	Actions required on HFS
	Actions required on CICS

	After running the EJB IVP—optional steps

	Testing your EJB server
	Running the EJB IVP
	Using the EJB “Hello World” sample
	Using the EJB Bank Account sample
	Using your own enterprise beans

	Setting up a multi-region EJB server
	Migrating an EJB server to CICS Transaction Server for z/OS, Version 3 Release 1
	Upgrading a single-region CICS EJB/CORBA server
	Upgrading a multi-region CICS EJB/CORBA server
	Performing a “rolling upgrade”

	Migration tips
	Potential problems

	Chapter 18. Running the EJB IVP
	Prerequisites for the EJB IVP
	Installing the EJB IVP
	HFS setup
	CICS setup
	Configuring the client

	Running the EJB IVP

	Chapter 19. Running the sample EJB applications
	The EJB “Hello World” sample application
	What the EJB “Hello World” sample does
	Prerequisites for the EJB “Hello World” sample
	Supplied components of the EJB “Hello World” sample
	Installing the EJB “Hello World” sample
	HFS setup
	CICS setup
	Web application server setup

	Testing the EJB “Hello World” sample

	The EJB Bank Account sample application
	What the EJB Bank Account sample does
	Prerequisites for the EJB Bank Account sample
	Supplied components of the EJB Bank Account sample
	Security of the EJB Bank Account sample
	Implementing role-based security for the Bank Account sample

	Installing the EJB Bank Account sample
	z/OS setup
	Web application server setup

	Testing the EJB Bank Account sample
	A note about distributed transactions
	Changing the sample to use distributed transactions
	Changing the enterprise bean's transaction attribute

	A note about data conversion

	Chapter 20. Writing enterprise beans
	Preparing beans for execution
	Coding a session bean
	Coding the home interface
	Coding the remote interface
	Coding the bean implementation
	Compiling the code
	Packaging the code

	Writing the client program
	Creating object references in the namespace
	Using JNDI to obtain bean references
	Writing a Client program to use LDAP
	WebSphere Context Factory
	SUN LDAP Context Factory

	Writing a client program to use COS Naming
	EJBUtils.java
	Gambler.java
	Using the client program

	Transaction interoperability with web application servers

	Working with EJB Handles, HomeHandles and EJBMetaData
	Using EDF with enterprise beans
	Bean-to-bean communication

	Chapter 21. Deploying enterprise beans
	The deployment tools for enterprise beans in a CICS system
	The Assembly Toolkit (ATK)
	The resource manager for enterprise beans
	CREA

	Using CICS deployment tools for enterprise beans

	Chapter 22. Updating enterprise beans in a production region
	The problem
	Possible solutions
	Solutions for a single listener/AOR
	Solution 1
	Solution 2

	Solutions for a multi-region EJB server
	Solution 1
	Solution 2

	Other possible solutions

	Chapter 23. The CCI Connector for CICS TS
	Overview of the CCI Connector for CICS TS
	The background—connectors
	The Common Client Interface
	Framework classes
	Input/output classes

	The CCI Connector for CICS TS
	Benefits of the CCI Connector for CICS TS
	Sample applications

	Using the CCI Connector for CICS TS
	Which classes to use?
	Framework classes
	Input/output classes

	Data conversion and the CCI Connector for CICS TS
	Installing the CCI Connector for CICS TS
	Requirements for the CCI Connector for CICS TS
	Compiling CCI applications
	Running CCI applications on CICS TS

	Using the sample utility programs to manage and acquire a connection factory
	Installing the publish and retract sample programs
	Publishing a connection factory using CICSConnectionFactoryPublish
	Running the program

	Looking up a connection factory
	Retracting a connection factory using CICSConnectionFactoryRetract

	The CCI Connector sample application
	Requirements for the CCI Connector sample
	Installing the CCI Connector sample
	Testing the sample

	Problem determination
	CCI Connector for CICS TS messages
	Tracing the CCI Connector for CICS TS

	Migrating from the CICS Connector for CICS TS to the CCI Connector for CICS TS

	Chapter 24. Dealing with CICS enterprise bean problems
	CICS enterprise bean set-up problems
	Methods that require multiple request processors

	Using EJB server runtime diagnostics
	CICS enterprise bean errors and messages
	JVM trace
	Debugging Java applications in CICS

	Using EJB client runtime diagnostics
	CORBA exceptions

	Class version issues with RMI-IIOP
	Using EJB trace and serviceability commands

	Chapter 25. Managing security for enterprise beans
	Protecting Java applications in CICS by using the Java 2 security policy mechanism
	Enabling a Java security manager and specifying policy files for a JVM
	Specifying policy files to apply to all JVMs
	The CICS-supplied enterprise beans policy file, dfjejbpl.policy

	Using enterprise bean security
	Defining file access permissions for enterprise beans
	Access to HFS files used by enterprise beans
	Access to data sets used by enterprise beans

	Deriving distinguished names

	Security roles
	Deployed security roles
	Enabling and disabling support for security roles
	Security role references
	Character substitution in deployed security roles
	Security roles in the deployment descriptor

	Implementing security roles
	Using the RACF EJBROLE generator utility
	Executing the utility

	Defining security roles to RACF

	Chapter 26. CICSPlex SM with enterprise beans
	CICSPlex SM support for enterprise beans
	CICSPlex SM definition support for enterprise beans
	BAS logical scope considerations
	Migration of enterprise bean components
	CICSPlex SM inquiry support for enterprise beans
	Types of inquiry available for enterprise bean objects
	Using CICSPlex SM to manage EJB workloads
	Workload balancing
	Workload separation

	CICSPlex SM resource monitoring considerations for enterprise beans
	CICSPlex SM real-time analysis considerations for enterprise beans

	Part 6. Using stateless CORBA objects
	Chapter 27. Stateless CORBA objects
	Developing stateless CORBA objects
	Obtaining an interoperable object reference (IOR)

	Creating the Interface Definition Language (IDL)
	Developing an IIOP server program
	IDL example
	Server implementation
	Resource definition for example

	Developing the IIOP client program
	Client example

	Developing an RMI-IIOP stateless CORBA application
	Stand-alone CICS CORBA client applications
	CORBA interoperability
	Using non-Java CORBA clients
	Writing a CORBA client to an enterprise bean
	Enterprise beans as CORBA clients
	Code sets

	Chapter 28. Migrating IIOP applications from CICS TS 1.3
	Chapter 29. Using the IIOP samples
	Setting up the IIOP sample environment
	Running the IIOP HelloWorld sample
	Building the server side HelloWorld application
	Building the client side HelloWorld application
	Running the HelloWorld sample application

	Running the IIOP BankAccount sample
	Creating the VSAM file
	Building the server side BankAccount application
	Building the client side BankAccount application
	Running the BankAccount sample application

	Part 7. Appendixes
	Bibliography
	The CICS Transaction Server for z/OS library
	The entitlement set
	PDF-only books
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	CICS family books
	Licensed publications

	Other CICS books
	Books from related libraries
	Determining if a publication is current

	Accessibility
	Index
	Notices
	Trademarks

	Sending your comments to IBM

